
VMM-Independent Graphics
Acceleration

H. Andrés Lagar-Cavilla, U of Toronto
andreslc@cs.toronto.edu
Niraj Tolia (CMU), Eyal de Lara (Toronto),
M. Satyanarayanan (CMU)

Why Virtualize 3D Acceleration?

Two simultaneous trends

VMs out of the server room

Client apps going 3D

●

And we only have software rendering (Mesa)

Virtualization of Client Apps

Soulpads
The Collective
Internet Suspend/Resume
Virtual Appliances
Moka5, MojoPac, BlackDog, ...

The World Is Going 3D

Why Is 3D Virtualization Hard?
3D vendors compete through HW diversity
Lack of unifying hardware abstraction
Closed specs

Open HW abstractions simplify virtualization:
Network -> Ethernet Frame
Block Devices -> BIO request
SCSI drives -> SCSI command packet
....

How could we ever write 3D applications?

3D Rendering APIs

De facto unifying software abstraction
Developer gets vendor independence

Two main APIs
OpenGL
Direct3D

OpenGL
Cross-platform

VMGL: Virtualizing OpenGL

Provides 3D HW acceleration to applications
running inside virtual machines

GPU independent
VMM independent
Guest OS independent
Suspend and resume capable

87% or better of native HW acceleration
Two orders of magnitude better than Mesa

VMGL Design

API virtualization
GPU vendor independence

OpenGL: cross-platform API
Guest OS independence

Network Communication
VMM independence

OpenGL Apps In X11 Systems

GPU

Application

X Server
Vendor

Open GL

3D 2D

VMGL Apps in X11 Guest VMs

GPU

 VMGL
Stub

Vendor
Open GL

Application

GL
Commands

Guest
Host

VM Viewer: VNC, SDL

VMGLX Server

Implementation Aspects
OpenGL API v1.5

Shaders through extensions

Efficient GL network transport

3D and 2D output composing in VM viewer

Suspend/Resume implementation

Xen-specific: Domain 0 drivers

Implementation Aspects
OpenGL API v1.5

Shaders through extensions

Efficient GL network transport

3D and 2D output composing in VM viewer

Suspend/Resume implementation

Xen-specific: Domain 0 drivers

Efficient GL Transport

Transport over network
VMM Independence

WireGL / Chromium
Intended for tiled rendering

Only send updates that “ matter”
glTextureXY only when texture visible

Combine, reorder and buffer commands
glRotate + glTranslate ->

Single matrix transformation

Output Composing in VM Viewer

3D & 2D output coming from different sources

Extension in VM's X server tells
viewer about 3D windows
Position
Size
Clipping

Suspend / Resume

Think each GL app as a GL device
Runtime: keep track of OpenGL state
Suspend: “ freeze” G L device (trivial)
Resume: flush state to new GL stub

OpenGL state is GPU independent
Suspend/resume across different GPUs

OpenGL state is bounded
See experiments

VMGL Suspend / Resume State

Windows
Visual bits
Binding to window manager extension

GL Contexts
Context data: fog, transformations...
Textures: pixmap, clamp mode
Display Lists: verbatim unrolling

VMGL Evaluation
VMGL: OpenGL Virtualization

VMMs
Xen – Paravirtual (results unless otherwise noted)
Xen – HVM
VMware Workstation

OSs
Linux 2.6.16.29
OpenSolaris 10 rel 06/06
FreeBSD rel 6.1

Hardware
ATI X600, Intel Dual Core 2.4 GHz, VT, 2GB Ram

Workloads

Enemy Territory

Unreal 2004

Quake 3

Mplayer

Performance (FPS)

Quake 3 Enemy Unreal Mplayer

0

10

20

30

40

50

60

70

80

90

Native

Performance (FPS)

Quake 3 Enemy Unreal Mplayer

0

10

20

30

40

50

60

70

80

90

Native
Mesa

Performance (FPS)

Quake 3 Enemy Unreal Mplayer

0

10

20

30

40

50

60

70

80

90

Native
Mesa

VMGL

87% or better of native performance

VMM Portability (FPS)

Quake 3 Enemy Unreal Mplayer

0

10

20

30

40

50

60

70

80

90

Xen HVM

VMware
Workstation
Xen PV-HVM

Xen PV

VMM and VM type independent

Guest OS Portability (FPS)

FreeBSD Open Solaris Linux

0

10

20

30

40

50

60

70

80

90

Mesa

VMGL

VMGL easily ported to other X11-based OSs

Quake 3 on VMware Workstation

Suspend Resume Performance

Quake 3 Enemy Unreal Mplayer
0

10

20

30

40

50

60

70

80

Quake 3 Enemy Unreal Mplayer
0

500

1000

1500

2000

2500

State Size(MBs) Resume Time (ms)

State size bounded
Also across GPUs from different vendors

Wrapping UP

VMGL: OpenGL virtualization

Enable intersection of two growing trends
Virtualization
3D Graphics

GPU/vendor independence
VMM independence
Guest OS independence

More eval & details in paper

TODO

VMM-specific improvements
Shared memory transport

Windows
Code porting
Window Manager hooks
Direct3D support via translation layers

THANKS

Demo
Q&A

2549 Downloads and counting:
www.cs.toronto.edu/~andreslc/vmgl/

andreslc@cs.toronto.edu

BACKUP

Xen Domain 0 GPU Drivers

ATI & Nvidia:
GPU Mem mapping in user-space GL lib

Oblivious to Xen additional indirection
Virtual -> Physical (VM) -> Machine
Even for domain 0

Fix open source portion of driver

Use Xen-paravirt mem mapping functions

Performance (FPS)

Quake 3 Enemy Unreal Mplayer
0

10

20

30

40

50

60

70

80

90

Native
Mesa

VMGL

87% or better of native performance

Concurrent Execution

Quake 3 Enemy Unreal Mplayer
0

0.2

0.4

0.6

0.8

1

VMGL

Native

CPU Consumption - Unreal

Bandwidth Consumption - Unreal

