VMM-Independent Graphics
Acceleration

H. Andrés Lagar-Cavilla, U of Toronto

andreslc@cs.toronto.edu
Niraj Tolia (CMU), Eyal de Lara (Toronto),
M. Satyanarayanan (CMU)

Why Virtualize 3D Acceleration?

Two simultaneous trends

* VMs out of the server room

* Client apps going 3D

And we only have software rendering (Mesa)

Virtualization of Client Apps

" The Collective

" Internet Suspend/Resume

* Virtual Appliances

- Moka5, MojoPac, BlackDog, ...

The World Is G

|+ [Stretch Volume Presets
| » [Spline Length Settings
|+ [Jigale Presets

Defaul \ Light \

START

Copyright ©2005 Comet Digital, LLC All Rights Reserved

Why Is 3D Virtualization Hard?

3D vendors compete through HW diversity
- Lack of unifying hardware abstraction
* Closed specs

Open HW abstractions simplify virtualization:
- Network -> Ethernet Frame

* Block Devices -> BIO request

* SCSI drives -> SCSI command packet

e

How could we ever write 3D applications?

3D Rendering APIs

De facto unifying software abstraction
Developer gets vendor independence

Two main APls
- OpenGL
= Direct3D

OpenGL
* Cross-platform

VMGL.: Virtualizing OpenGL

Provides 3D HW acceleration to applications
running inside virtual machines

* GPU independent

* VMM independent

* Guest OS independent

* Suspend and resume capable

» 87% or better of native HW acceleration
~ Two orders of magnitude better than Mesa

VMGL Design

API virtualization
* GPU vendor independence

OpenGL: cross-platform API
~ Guest OS independence

Network Communication
* VMM independence

OpenGL Apps In X11 Systems

Ap

VMGL Apps in X11 Guest VMs

A VM Viewer: VNC, SDJ

X Se

GL

Commands Ven
Ope

Guest

Host

Implementation Aspects

‘OpenGL API v1.5
- Shaders through extensions

"Efficient GL network transport
3D and 2D output composing in VM viewer
‘Suspend/Resume implementation

Xen-specific: Domain 0 drivers

Implementation Aspects

"OpenGL API v1.5
 Shaders through extensions

Efficient GL network transport
3D and 2D output composing in VM viewer
"Suspend/Resume implementation

Xen-specific: Domain 0 drivers

Efficient GL Transport

Transport over network
* VMM Independence

WireGL / Chromium
" Intended for tiled rendering

Only send updates that “matter”
* glTextureXY only when texture visible

Combine, reorder and buffer commands
- glRotate + glTranslate ->
Single matrix transformation

Output Composing in VM Viewer
3D & 2D output coming from different sources

Extension in VM's X server tells

viewer about 3D wmdows *
P 0S |t| on T —
* Size

* Clipping

Suspend / Resume

Think each GL app as a GL device

" Runtime: keep track of OpenGL state
* Suspend: “freeze’G L device (trivial)
* Resume: flush state to new GL stub

OpenGL state is GPU independent
* Suspend/resume across different GPUs

OpenGL state is bounded
- See experiments

VMGL Suspend / Resume State

Windows
* Visual bits
* Binding to window manager extension

GL Contexts

- Context data: fog, transformations...
 Textures: pixmap, clamp mode

* Display Lists: verbatim unrolling

VMGL Evaluation
VMGL: OpenGL Virtualization

VMMs

= Xen - Paravirtual (results unless otherwise noted)
« Xen - HVM

* VMware Workstation

OSs

* Linux 2.6.16.29

» OpenSolaris 10 rel 06/06
* FreeBSD rel 6.1

Hardware
= ATI X600, Intel Dual Core 2.4 GHz, VT, 2GB Ram

Workloads
“ eraaien a0 <

L4
- "=
([7] zg“ Duke ranvir
DEMO CONTROLS
a8 acores
£1-Fs avldemo record
e, s was killed by Blinny's @arand - F1L-F1z scceenshot
r -
KE_DOWN slow down {—-)
: | R & BEmodxen o
- BEUP epeed up (+:)
@ Gacizecniaas r Dochartman 8 RIGET cpasd Up (1)
\ SEACE nornal apesa
@ voctiartman was Killed by Niners's Tuompacn
ENIER mxternal view
LEL/RGET Change angle

TEADOWN Mowe Luiout

I I S
L o e
‘. Far TII‘_\
30/60

& % 125nF 42xP

Enemy Territory

i
HeH IEMING

o _[Edl::]Launi_daE

MPLAYER

Unreal 2004

Performance (FPS)

90———.

80—

70~

60—

50~

Native
40~

30~

—
—_—

20~

—_——

_—

10~

Quake 3 E

nemy Unreal Mplayer

Performance (FPS)

90———.

80—

70~

60—

50~

Native

. " Mesa

30~

—
—_—

20~

—_——

_—

10~ 3 -

Quake 3. E '

nemy Unreal Mplayer

Performance (FPS)

90—

80—

70~

60—

50~

NEUYE
~ Mesa
B VMGL

40~

30~

20~
10~

Enemy Unreal Mplayer

*87% or better of native performance

VMM Portability (FPS)

Xen HVM
50— 7 VMware
40— | Workstation
30— = B Xen PV-HVM
20" - | B | B Xen PV
10

Unreal

Mplayer N

- VMM and VM type independent

Guest OS Portability (FPS)

Quake 3 on VMware Workstation

~ Mesa
B VMGL

- VMGL easily ported to other X11-based OSs

Suspend Resume Performance

State Size(MBs)

Quake 3 Enemy Unreal Mplayer

» State size bounded

Resume Time (ms)

2500——

2000——
1500—

1000/

Quake 3 Enemy Unreal Mplayer

* Also across GPUs from different vendors

Wrapping UP

VMGL: OpenGL virtualization

Enable intersection of two growing trends
* Virtualization
* 3D Graphics

GPU/vendor independence
VMM independence
Guest OS independence

More eval & details in paper

TODO

VMM-specific improvements
» Shared memory transport

Windows

~ Code porting

* Window Manager hooks

* Direct3D support via translation layers

THANKS

Demo
Q&A

2549 Downloads and counting:
www.cs.toronto.edu/~andreslc/vmgl/

andreslc@cs.toronto.edu

BACKUP

Xen Domain 0 GPU Drivers

ATI & Nvidia:
* GPU Mem mapping in user-space GL lib

Oblivious to Xen additional indirection
* Virtual -> Physical (VM) -> Machine
* Even for domain O

Fix open source portion of driver

Use Xen-paravirt mem mapping functions

Performance (FPS)

901
801
70-
601
507 NEWE
Mesa
B VMGL

40-
30-
20

0 SR . I !_

10

Quake 3 Enemy Unreal Mplayer

- 87% or better of native performance

Concurrent Execution

I VMGL

——*—*—*—_

Quake 3 Enemy Unreal Mplayer

CPU Consumption - Unreal

200 r
Dual Core
Single Core
150
S
O
O
S 100 |
D
D
o
O
50
O | | | | | | | | |
0 2{0) 40 60 80 100 120 140 160 180
Time (8)

Bandwidth Consumption - Unreal

2000

Dual Core
Single Core
1500 |-
o
5
=3
i .
= 1000
=
©
-
48]
m
500
0

0 20 40 60 80 100 120 140 160 180
Time (s)

