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Why Virtualize 3D Acceleration?

Two simultaneous trends

* VMs out of the server room

* Client apps going 3D

And we only have software rendering (Mesa)




Virtualization of Client Apps

" The Collective

" Internet Suspend/Resume

* Virtual Appliances

- Moka5, MojoPac, BlackDog, ...
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Why Is 3D Virtualization Hard?

3D vendors compete through HW diversity
- Lack of unifying hardware abstraction
* Closed specs

Open HW abstractions simplify virtualization:
- Network -> Ethernet Frame

* Block Devices -> BIO request

* SCSI drives -> SCSI command packet

e

How could we ever write 3D applications?




3D Rendering APIs

De facto unifying software abstraction
Developer gets vendor independence

Two main APls
- OpenGL
= Direct3D

OpenGL
* Cross-platform



VMGL.: Virtualizing OpenGL

Provides 3D HW acceleration to applications
running inside virtual machines

* GPU independent

* VMM independent

* Guest OS independent

* Suspend and resume capable

» 87% or better of native HW acceleration
~ Two orders of magnitude better than Mesa




VMGL Design

API virtualization
* GPU vendor independence

OpenGL: cross-platform API
~ Guest OS independence

Network Communication
* VMM independence



OpenGL Apps In X11 Systems
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VMGL Apps in X11 Guest VMs

A VM Viewer: VNC, SDJ
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Implementation Aspects

‘OpenGL API v1.5
- Shaders through extensions

"Efficient GL network transport
3D and 2D output composing in VM viewer
‘Suspend/Resume implementation

Xen-specific: Domain 0 drivers
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"OpenGL API v1.5
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Xen-specific: Domain 0 drivers



Efficient GL Transport

Transport over network
* VMM Independence

WireGL / Chromium
" Intended for tiled rendering

Only send updates that “matter”
* glTextureXY only when texture visible

Combine, reorder and buffer commands
- glRotate + glTranslate ->
Single matrix transformation




Output Composing in VM Viewer
3D & 2D output coming from different sources

Extension in VM's X server tells

viewer about 3D wmdows *
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Suspend / Resume

Think each GL app as a GL device

" Runtime: keep track of OpenGL state
* Suspend: “freeze’G L device (trivial)
* Resume: flush state to new GL stub

OpenGL state is GPU independent
* Suspend/resume across different GPUs

OpenGL state is bounded
- See experiments



VMGL Suspend / Resume State

Windows
* Visual bits
* Binding to window manager extension

GL Contexts

- Context data: fog, transformations...
 Textures: pixmap, clamp mode

* Display Lists: verbatim unrolling



VMGL Evaluation
VMGL: OpenGL Virtualization

VMMs

= Xen - Paravirtual (results unless otherwise noted)
« Xen - HVM

* VMware Workstation

OSs

* Linux 2.6.16.29

» OpenSolaris 10 rel 06/06
* FreeBSD rel 6.1

Hardware
= ATI X600, Intel Dual Core 2.4 GHz, VT, 2GB Ram
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Performance (FPS)
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Performance (FPS)
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VMM Portability (FPS)
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- VMM and VM type independent




Guest OS Portability (FPS)

Quake 3 on VMware Workstation

~ Mesa
B VMGL

- VMGL easily ported to other X11-based OSs




Suspend Resume Performance

State Size(MBs)
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» State size bounded

Resume Time (ms)
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* Also across GPUs from different vendors




Wrapping UP

VMGL: OpenGL virtualization

Enable intersection of two growing trends
* Virtualization
* 3D Graphics

GPU/vendor independence
VMM independence
Guest OS independence

More eval & details in paper



TODO

VMM-specific improvements
» Shared memory transport

Windows

~ Code porting

* Window Manager hooks

* Direct3D support via translation layers




THANKS

Demo
Q&A

2549 Downloads and counting:
www.cs.toronto.edu/~andreslc/vmgl/

andreslc@cs.toronto.edu



BACKUP



Xen Domain 0 GPU Drivers

ATI & Nvidia:
* GPU Mem mapping in user-space GL lib

Oblivious to Xen additional indirection
* Virtual -> Physical (VM) -> Machine
* Even for domain O

Fix open source portion of driver

Use Xen-paravirt mem mapping functions




Performance (FPS)
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Concurrent Execution

I VMGL
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CPU Consumption - Unreal
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Bandwidth Consumption - Unreal
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