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Abstract

Increasing memory demand and slowdown in technology
scaling pose important challenges to total cost of ownership
(TCO) of warehouse-scale computers (WSCs). One promising
idea to reduce the memory TCO is to add a cheaper, but
slower, “far memory” tier and use it to store infrequently
accessed (or cold) data. However, introducing a far memory
tier brings new challenges around dynamically responding
to workload diversity and churn, minimizing stranding of
capacity, and addressing brownfield (legacy) deployments.
We present a novel software-defined approach to far mem-
ory that proactively compresses cold memory pages to effec-
tively create a far memory tier in software. Our end-to-end
system design encompasses new methods to define perfor-
mance service-level objectives (SLOs), a mechanism to iden-
tify cold memory pages while meeting the SLO, and our
implementation in the OS kernel and node agent. Addition-
ally, we design learning-based autotuning to periodically
adapt our design to fleet-wide changes without a human in
the loop. Our system has been successfully deployed across
Google’s WSC since 2016, serving thousands of production
services. Our software-defined far memory is significantly
cheaper (67% or higher memory cost reduction) at relatively
good access speeds (6 ps) and allows us to store a signifi-
cant fraction of infrequently accessed data (on average, 20%),
translating to significant TCO savings at warehouse scale.

CCS Concepts - Computer systems organization —
Distributed architectures; « Software and its engineer-
ing — Memory management.
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1 Introduction

Effectively scaling out a warehouse-scale computer (WSC) [7]
requires that all resource types be scaled in a balanced man-
ner, so that the overall resource ratios between compute,
memory, storage, and networking can satisfy the aggregate
workload requirements. Failing to scale one resource type
causes the others to be stranded, hurting the cost per perfor-
mance of the entire WSC. Consequently, scaling out WSCs
is often limited by the components that have the weakest
scaling behavior in terms of both performance and cost ef-
fectiveness.

In recent years, DRAM has become a critical bottleneck for
scaling the WSCs. The slowdown of device-level scaling (the
end of Moore’s law [35]) prevents the reduction in cost per
GB of DRAM [25, 27]. At the same time, the prevalence of in-
memory computing, particularly for big-data workloads, has
caused an explosive growth in DRAM demand. These two
trends have resulted in a global DRAM supply shortage in
recent years, posing serious challenges to the cost-effective
scaling of WSCs.

One promising direction that has been previously pro-
posed to reduce the cost of memory ownership is the intro-
duction of second-tier memory or far memory. Far memory
is a tier between DRAM and Flash that has lower cost per GB
than DRAM and higher performance than Flash. By intro-
ducing far memory into the memory hierarchy and storing
infrequently accessed (or cold) data into far memory, the sys-
tem can perform the same jobs with a lower DRAM capacity
or pack more jobs to each machine, both of which reduce
the total cost of ownership (TCO).
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Modern WSCs and applications running on them have the
following characteristics that demand unique requirements
when deploying second-tier memory:

Near-zero tolerance to application slowdown. WSCs are
sensitive to cost per performance because of their economies
of scale [7]. While adoption of far memory realizes savings in
the memory aspect of WSC TCO, slowdown in applications
can result in both irrecoverable Service Level Agreement
(SLA) violations and the need to increase provisioned capac-
ity to offset the performance loss due to extra time spent on
far memory tier. Slowdowns of even a few percentage points
introduced by the adoption of far memory can thus offset all
potential TCO savings.

Heterogeneity of applications. Applications running on
modern WSCs are becoming more numerous and diverse [7,
24]. Such heterogeneity makes per-application optimization
for far memory impractical and necessitates a transparent
yet robust mechanism for effectively utilizing far memory.

Dynamic cold memory behavior. WSCs exhibit dynamic
changes in job mixes and/or utilization (e.g., diurnal pat-
terns), introducing variability in the effective size of memory
per machine that can exploit far memory technologies. Con-
sequently, the optimal ratio between near and far memory
not only depends on the workloads running at a given time
but also shifts over time. Therefore, it is desirable to de-risk
the TCO impact of stranded far memory capacity, or alterna-
tively be flexible in provisioning.

In this paper, we address the aforementioned challenges
to WSC cost of ownership, presenting our system design
and experience in adopting far memory approach within
Google’s production WSCs at scale. Specifically, we make
the following contributions:

o We present a fleet-wide longitudinal characterization of a
real-world WSC that quantifies the large variability in the
amount of available cold memory per machine. We show
that cold memory ranges from 1% to 61% across different
clusters and from 1% to 52% even within the same cluster
based on application mix and the time of day. Such ranges
warrant the need for flexible far memory provisioning
instead of fixed-capacity far memory.

e We showcase a software-defined approach to far mem-
ory, one that is readily available, offers flexibility, and
improves time to market, making memory TCO tenable.
Specifically, we demonstrate that zswap [1], a Linux ker-
nel mechanism that stores memory compressed in DRAM,
can be used to implement software-defined far memory
that provides single-digit us of latency at tail. We also
show that our proactive approach to move cold pages to
slower far memory works favorably in reaping memory
capacity from pages with low access rates, as opposed to a
reactive approach under memory pressure on a machine.

e We discuss the design and implementation of our ap-
proach. Our control plane consists of (1) a kernel mecha-
nism that collects memory access statistics and swaps out
cold memory pages to far memory and (2) a node agent
that controls the aggressiveness of the kernel mechanism
based on application behavior. Our design stands on a
well-defined Service Level Objective (SLO) and can be
generalized to other types of far memory devices.

e We implement an autotuning system that uses machine
learning to optimize the control plane based on the fleet-
wide behavior. It consists of a fast far memory model
estimating the far memory behavior of the entire WSC
under different configurations and design space explo-
ration guided by a machine learning algorithm called
Gaussian Process (GP) Bandit [17, 21, 39]. This facilitates
the whole system to adapt to long-term behavior shifts
of the entire WSC.

e We present evaluation data from real-world use cases
including longitudinal studies across a mix of production
workloads and a case study with Bigtable [10]. Our system
can migrate 20-30% of infrequently used data, facilitating
4-5% savings in memory TCO (millions of dollars at WSC
scale), while having a negligible impact on a diverse mix
of applications. Our machine-learning-based autotuner
improves the efficiency of our system by an additional
30% relative to heuristic-based approaches.

2 Background and Motivation
2.1 Far Memory

Far memory is a tier between DRAM and Flash that provides
lower cost per GB than DRAM and higher performance than
Flash. In this section, we provide an overview of far mem-
ory technologies that have been studied by prior work and
discuss their characteristics from the WSC perspective.

Non-volatile memory. Non-volatile memory (NVM) is an
emerging memory technology that realizes higher density
(thus lower cost per GB) than DRAM and persistency based
on new materials. To date, relative to DRAM, most of the
NVM technologies show higher latency (from hundreds of
ns to tens of ps), lower bandwidth (single-digit GB/s), and
read/write asymmetry (i.e., writes are slower than reads).
In terms of access interface, two types of NVM devices are
available in the market: memory bus (e.g., NVDIMM-P [37],
Intel Optane DC Persistence Memory [20], etc.) and PCIe bus
(e.g., Intel Optane DC SSD [20], Samsung Z-SSD [38], etc.).
The main difference between the two is that the former al-
lows load/store accesses to NVM at a cache block granularity,
while the latter is available through a page-granular access
interface like storage devices and the data has to be copied
from NVM to main memory before accessing it. Because of
this, the former often provides faster access to data stored in
NVM but requires hardware support from the CPU side.



Many current NVM devices are available only in fixed
predetermined sizes. This can potentially lead to resource
stranding in the context of WSCs.

Remote memory. Memory disaggregation [30] is an approach
of using remote machines’ memory as a swap device. It is
implemented by utilizing unused memory in remote ma-
chines [18, 29], or by building memory appliances whose
only purpose is to provide a pool of memory shared by many
machines [30, 31]. Both styles of implementation reduce the
need for over-provisioning the memory capacity per ma-
chine by balancing the memory usage across the machines
in a cluster. Accessing a remote page takes one to tens of ps,
depending on the cluster size and network fabric speed.

Remote memory has interesting challenges to be addressed
in the context of WSCs before it can be deployed to real-
ize memory TCO savings [6]. First, swapping out memory
pages to remote machines expands the failure domain of
each machine, which makes the cluster more susceptible to
catastrophic failures. Second, pages that are being swapped
out have to be encrypted before leaving the machine in order
to comply with the stringent security requirements that are
often set by WSC applications processing sensitive infor-
mation. Third, many WSC applications are sensitive to tail
latency [7], but bounding tail latency is harder for a cluster
or a rack than for a machine.

2.2 Far Memory in a Real-World WSC:
Opportunities and Challenges

In this subsection, we analyze the aggregate cold memory
behavior of Google’s WSC [24] and highlight opportunities
and challenges in large-scale deployment of far memory in
WSCs. This insight is critical towards designing a far mem-
ory system for WSCs because the cold memory behavior of
workloads directly correlates with the efficacy of far memory.
For example, applications with many cold memory pages
are likely to benefit more from far memory than those with
fewer cold memory pages.

There are many approaches one can take to define the
coldness of a memory page. We focus on a definition that
draws from the following two principles: (1) the value of
temporal locality, by classifying as cold a memory page that
has not been accessed beyond a threshold of T seconds; (2) a
proxy for the application effect of far memory, by measuring
the rate of accesses to cold memory pages, called promotion
rate. These two principles are the cornerstone of our cold
page identification mechanism (explained in Section 4).

Figure 1 shows the fleet-wide average of the percentage
of cold memory and the promotion rate of each job running
in the WSC under different T values. Since a lower T value
classifies pages as cold at an earlier stage of their lifetime, it
identifies more cold pages. At the most aggressive setting of
T =120, we observe that 32% of memory usage is cold on

35% T T T T T T T T
I Cold Mem (% Mem Usage) |
[ Promotion Rate (% Cold Mem/min)

30% -
25% -
20% - R
15% - i
10% - R

5% - R

0%

o O O o o o o
N ¥ O © O N T
— N O < O N~

T (seconds)

o
O
o

1080
1200
1320
1800
3600
7200
14400
28800

Figure 1. The average percentage of cold memory and pro-
motion rate (y-axis; units specified in the legend) under dif-
ferent cold age thresholds (x-axis).
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Figure 2. Cold memory variation across the machines in the
top 10 largest clusters. The plot shows overall distribution
(violins), median (circles), the first/third quartiles (boxes), and
1.5 interquartile range (IQR) from the first/third quartiles
(whiskers) of cold memory percentage for each cluster.

average. This large fraction of cold memory demonstrates
the huge potential from far memory in real-world WSCs.

On the other hand, the performance overhead of far mem-
ory increases as the system becomes more aggressive in
identifying cold memory. At T = 120 s, applications access
15% of their total cold memory every minute on average. De-
pending on the relative performance difference between near
memory and far memory, this access rate may noticeably
degrade the application performance, offsetting the TCO
savings from far memory.

This trade-off relationship between the percentage of cold
memory and the performance overhead motivates the need
for a robust control algorithm that can maximize the former
while minimizing the latter. For the rest of this subsection,
we will assume T = 120 s for simplicity.

Figure 2 illustrates the distribution of the percentage of
cold memory per machine (i.e., total size of cold memory
divided by memory usage in each machine) across 10 clusters
of up to tens of thousands of machines each. We find that
the percentage of cold memory varies from 1% to 52%, even
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Figure 3. Cold memory variation across jobs. The plot shows
the cumulative job distribution with respect to the percent-
age of cold memory.

within a cluster. If we provision the far memory capacity
per machine to be 20% of the total memory capacity, some
machines will have up to 30% more cold memory than the
available far memory capacity. On the other hand, provision-
ing at 50% will result in insufficient near memory capacity in
some machines, leading to too much performance overhead.
Neither approach is favorable from a TCO perspective.

Moreover, application behavior adds another dimension
of variability. Figure 3 depicts how the percentage of cold
memory in each job (averaged across the job execution) is
distributed. For the top 10% of jobs, at least 43% of memory
usage is cold; this percentage drops to below 9% for the
bottom 10% of the jobs. Such heterogeneity, along with a
large number of jobs running on modern WSCs, makes per-
application optimization for far memory impractical.

In summary, storing cold memory to cheaper but slower
far memory has great potential of saving TCO in WSCs.
But for this to be realized in a practical manner, the system
has to (1) be able to accurately control its aggressiveness to
minimize the impact on application performance and (2) be
resilient to the variation of cold memory behavior across
different machines, clusters, and jobs.

3 Software-defined Far Memory

We show a software-defined approach to far memory imple-
mentation, which we have adopted and deployed at Google.
In particular, we propose to adopt zswap [1] as a far memory
solution that is readily available today. In the Linux kernel
(3.11+), zswap works as a swap device, which is to avoid the
machine from running out of memory. Instead, we take a
proactive approach towards storing cold compressed pages
in memory using zswap and implement far memory in soft-
ware. Compressing memory pages allows us to pack more
data in memory (i.e., lower cost per GB) at a cost of increased
access time. At a high level, this is no different from any other
far memory implementation from a TCO perspective.

3.1 Advantages of Software-defined Far Memory

In the context of Google WSCs, zswap-based far memory
provided the following benefits that were key to early de-
ployment over other types of far memory devices.

Reliability. zswap confines failure domain within a ma-
chine, limiting catastrophic failures to a single machine,
while avoiding security and reliability challenges of remote
memory. Also, it does not introduce additional hardware
components, which simplifies the system design, implemen-
tation, testing, deployment, and monitoring.

Time to deployment. zswap, being a software approach,
can be deployed with much shorter time and lower effort,
and does not require cross-vendor collaborations as there
is no need of any special hardware (e.g., NVM). Moreover,
some NVM technologies require deploying a new server
platform (e.g., new CPUs with special memory controllers),
making it impossible to retrofit far memory to older server
generations, and thus, limiting their deployments to the rate
of new platforms. Note that the velocity of deployment is
critical for WSCs because quick deployment of a readily
available technology and harvesting its benefits for a longer
period of time is more economical than waiting for a few
years to deploy newer platforms promising potentially bigger
TCO savings.

No new hardware cost. Instead of adding hardware cost
as in other far memory technologies, zswap trades off CPU
cycles (for compression and decompression) with memory
savings. Considering availability of idle cycles in WSCs due
to large variation in CPU usage [36], such extra CPU cycles
can be serviced in general for free, thereby minimizing the
cost of far memory itself.

Adaptive to dynamic application behavior. Shift in job
mixes and memory access patterns in WSCs (Section 2.2)
result in variability of the size of cold memory per machine
and across machines. zswap can adapt to this variation by dy-
namically resizing memory capacity available to the jobs, by
compressing more/less memory. Even with such dynamism,
zswap can still realize memory CapEx savings because aver-
aging across tens of thousands of machines makes memory
savings stable at the cluster level, which is how we provi-
sion capacity (Section 6.1). This differentiates zswap from far
memory solutions whose capacity cannot be easily changed
once deployed. Furthermore, it enables shorter turnaround
time for experimenting with different settings without chang-
ing the hardware configuration at scale.

3.2 Challenges in Software-defined Far Memory

The control mechanism for far memory in WSCs requires
(1) tight control over performance slowdowns to meet de-
fined SLOs and (2) low CPU overhead so as to maximize
the TCO savings from far memory. Although zswap exhibits



favorable properties for far memory design in WSCs, its con-
trol plane does not meet the above criteria. This is because
zswap in the Linux kernel, when enabled, is triggered only
on direct reclaim (i.e., when a host memory node runs out of
memory) and tries to compress pages until it makes enough
room to avoid out-of-memory situations, stalling application
allocations. This mechanism has the following shortcomings:
(1) the performance overhead due to zswap decompression
is unbounded, (2) its bursty compression overhead at the last
minute negatively affects the tail latencies hurting Service-
Level Indicators (SLIs) of WSC applications, and (3) memory
savings are not materialized until the machines are fully
saturated. In fact, we did evaluate this approach during our
deployment but observed noticeable degradation in applica-
tion performance, negatively impacting TCO.

Additionally, not every piece of data in WSC’s DRAM
is amenable to savings from compression, resulting in an
opportunity cost of wasted cycles when zswap chooses to
compress such data. For example, video data in memory may
not be as compressible as textual data.

Therefore, in this paper, we design an end-to-end warehouse-
scale system that identifies cold pages and proactively mi-
grates them to far memory while treating performance as a
first-class constraint. The key question is how cold is cold?
or what is the definition of a cold page? The quality of the
cold page identification algorithm will impact both memory
savings and application impact.

4 Cold Page Identification Mechanism

Our goal is to design a robust and effective control plane for
large-scale deployment of zswap. As in zswap in the Linux
kernel or other swap mechanisms, our system works at a OS
page granularity when migrating pages between near mem-
ory (e.g., DRAM) and far memory (e.g., zswap). This enables
far memory adoption with no hardware modifications.

The primary difference from the existing zswap mecha-
nism is around when to compress pages, or when to migrate
pages from near memory to far memory. Unlike zswap in the
Linux kernel, our system identifies cold memory pages in
the background and proactively compresses them, so that
the extra free memory can be used to schedule more jobs
to the machine. Once a compressed page is accessed, zswap
decompresses the page and keeps it in a decompressed state
from then on to avoid repeatedly incurring decompression.
Such pages become eligible for compression again when they
become cold in future.

The efficacy of our system heavily depends on how accu-
rately it identifies cold pages. Below, we explain our mecha-
nism for cold page identification.

4.1 Definition of Cold Pages

Our system identifies cold pages based on the time since the
last access to each page, or simply, age. A page is considered

cold when it has not been accessed for more than T seconds.
We call T the cold age threshold and it determines how ag-
gressively the system identifies cold memory pages. We base
this mechanism on prior work [28, 42, 46].

The cold age threshold has a direct impact on both mem-
ory savings and performance overhead. Classifying pages
as cold can prematurely map them to far memory, causing
performance degradation. Our system tries to find the low-
est cold age threshold that satisfies the given performance
constraints in order to maximize the memory savings under
a well-defined SLO, which we discuss next.

4.2 Performance SLO for Far Memory

In WSC environments, directly correlating the impact of the
cold memory threshold on application performance is chal-
lenging because of the diverse nature of performance metrics
across different applications, which themselves can range
from latency-sensitive (e.g., user-facing web frontend) to
throughput-oriented (e.g., machine learning training pipelines).
Therefore, we define a low-level indicator that is easy to mea-
sure in an application-agnostic manner but still correlates
with the performance overhead from far memory.

Promotion rate. The performance overhead of far memory
comes from accessing pages that are stored in far memory
(we call such an operation promotion). Thus, we define pro-
motion rate, the rate of swapping in pages from far memory
to near memory, and use it as an SLI for far memory per-
formance. Since pages in far memory are migrated to near
memory once they are accessed, the promotion rate is equiv-
alent to the number of unique pages in far memory that are
accessed in a unit time.

Target promotion rate. Different applications have differ-
ent levels of performance sensitivity to promotion rate. For
example, at the same level of an absolute promotion rate,
small jobs are more likely to experience higher performance
overhead than big jobs because of a potentially higher frac-
tion of far memory accesses in the former. This necessitates
a way to normalize the absolute promotion rate by a metric
that represents how “big” each job is.

Therefore, we design our system to keep the promotion
rate below P% of the application’s working set size per
minute, which serves as a Service Level Objective (SLO) for
far memory performance. We define the working set size of
an application as the total number of pages that are accessed
within minimum cold age threshold (120 s in our system).
The working set size per minute serves as a proxy of job’s
memory bandwidth usage, which, based on our evaluation,
correlates with job’s performance sensitivity to far mem-
ory accesses. Our SLO ensures that no more than P% of the
working set of an application is from far memory, thereby
limiting the performance overhead of far memory.



The exact value of P depends on the performance differ-
ence between near memory and far memory. For our de-
ployment, we conducted months-long A/B testing at scale
with production workloads and empirically determined P
to be 0.2%/min. At this level of a target promotion rate, the
compression/decompression rate of a job is low enough to
not interfere with other colocated jobs in the same machine.

Enforcing the promotion rate to be lower than the target
prevents bursty decompression from applications because
it limits the rate of decompression by definition. In the rare
cases where aggressive or correlated decompression bursts
cause the machine to run out of memory for decompressing
compressed pages, we selectively evict low-priority jobs by
killing them and rescheduling them on other machines. Our
WSC control plane [40] offers an eviction SLO to users, which
has never been breached in 18 months in production while
we realized memory savings.

4.3 Controlling the Cold Age Threshold

To determine the lowest cold age threshold that meets the
promotion rate SLO, we estimate the promotion rate of an
application for different cold age thresholds. For this purpose,
we build a promotion histogram for each job in the OS kernel,
where, for each cold page threshold T, we record the total
promotion rate of pages that are colder than the threshold
T. As an example, let’s assume a case where an application
has two memory pages, A and B, that were accessed 5 and
10 minutes ago, respectively, and both pages were accessed
again 1 minute ago. In this scenario, the promotion histogram
returns 1 promotion/min for T = 8 min because only Bwould
have been considered cold under T = 8 min when the two
pages were accessed one minute ago. Similarly, it returns 2
promotions/min for T = 2 min since now both A and Bwould
have been considered cold under T = 2 min. We discuss our
implementation in Section 5.1.

While the promotion histogram lets us choose the best
cold age threshold for the past, it is not necessarily the best
threshold for the future. Ideally, the control algorithm has to
give us a stable threshold over time so as to reduce unnec-
essary compression and decompression costs. At the same
time, the system has to be responsive to sudden spikes in ap-
plication activity and avoid compressing too much memory
for a prolonged period of time. Thus, our system controls
the threshold based on the following principles:

o It keeps track of the best cold age threshold of each 1-
minute period in the past and uses their K-th percentile
as the threshold for the next one minute. By doing so, it
will violate the SLO for approximately (100 — K)% of the
times under the steady state.

o If the best cold age threshold from the last one minute is
higher than the K-th percentile from the past (i.e., jobs
accessing more cold memory during the last one minute
than the K-th percentile of the past behavior), we use the
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Figure 4. Overall system design.

former so that the system can quickly react to sudden
hike in application activity.

e Since the algorithm relies on per-job history, we disable
zswap for the first S seconds of job execution to avoid
making decisions based on insufficient information.

4.4 Calculating the Size of Cold Memory

The last piece of our mechanism is estimating the size of
cold memory under different cold age thresholds. For this,
our system builds per-job cold page histogram for a given
set of predefined cold age thresholds. In this histogram, for
each cold age threshold T, we record the number of pages
that have not been accessed for at least T seconds. This
information is used to (1) estimate the working set size of a
job (used to normalize the promotion rate; see Section 4.2)
and (2) perform offline analysis for potential memory savings
under different cold age thresholds (Section 5.3).

5 System Implementation

In this section, we discuss the implementation of our cold
page identification mechanism in the OS kernel and node
agent and the autotuning system for it. We present and eval-
uate our system design based on zswap, a readily available
Linux feature, but our design can be generalized to other
types of far memory technologies as our control plane is not
tied to any specific far memory device.

Figure 4 illustrates the high-level diagram of our system
design. On each production machine, our customized Linux
kernel (Section 5.1) and a node agent (Section 5.2) adjust the
cold age threshold and collect statistics for each job. Using
jobs’ historical data, we use machine learning to tune the
parameters for node agents (Section 5.3).

5.1 Kernel

We use Linux’s memory cgroup (memcg) [2] to isolate jobs in
our WSC. The software-defined far memory is built on top of
zswap. We run two machine-wide kernel daemons, namely
kstaled and kreclaimd, to collect far memory statistics and



move pages to far memory. We first discuss our zswap imple-
mentation and the modifications needed for non-disruptive
deployment in our production environment.

zswap. We augment upstream Linux’s zswap implementa-
tion with several features tailored to WSC deployment. We
use the Izo algorithm to achieve low CPU overhead for com-
pression and decompression.!

Once zswap compresses a page, it allocates memory to
store the compression payload. We use zsmalloc as the com-
pressed data arena. We maintain a global zsmalloc arena
per machine, with an explicit compaction interface that can
be triggered by the node agent when needed. While a per-
memcg zsmalloc arena seems more intuitive given that we
encapsulate jobs with memcgs, it leads to varying degrees
of external fragmentation in each zsmalloc arena because
WSCs often pack tens or hundreds of jobs per machine. Our
initial study with per-memcg zsmalloc arenas found thou-
sands of instances per day of arenas fragmented to the point
of negative gains.

Empirically, there are no gains to be derived by storing
zsmalloc payloads larger than 2990 bytes (73% of a 4KiB
x86 page), where metadata overhead becomes higher than
savings from compressing the page. When attempting to
compress a page that yields a payload larger than that, we
mark the page as incompressible and reject it. The incompress-
ible state prevents zswap from attempting to re-compress
that page and is cleared when kstaled (see below) detects
any of the PTEs associated with the page have become dirty.

When a job reaches its memory limit, we turn off zswap
instead of using it as a swap device. This is because WSC
applications prefer “failing fast” and restarting elsewhere
in the cluster by relying on their fault-tolerant nature [7],
rather than wasting CPU cycles in the kernel mode trying to
stave off job preemption. It also makes zswap coherent with
typical behavior of the cluster-wide scheduler, which kills
best-effort jobs when they run out of memory.

When a machine runs out of memory, the kernel will use
direct memory reclaim in the context of a faulting process.
The node agent maintains a “soft” limit for each memcg
equivalent to its working set size (determined with the ap-
proach in Section 4.2) and the kernel does not reclaim below
this threshold. This protects the working set of high-priority
jobs and prevents reclaiming job threads from spending ex-
cessive cycles doing zswap, while reinforcing the preference
of “failing-fast” low-priority jobs.

kstaled. We periodically scan the accessed bit present in
page table entries to infer if a page is accessed in a given
time period [4, 19]. We leverage kstaled, a kernel daemon,
to track the age of all physical pages eligible for memory

!We compared several compression algorithms, including lzo, 1z4, and
snappy, and concluded that 1zo shows the best trade-off between com-
pression speed and efficiency.

reclaim based on accessed bit information [28]. Note that
accessed bit is set by the MMU whenever a physical page is
accessed and it is up to the software to clear it [4, 19].

Across each scan period, kstaled walks process page tables
to read the accessed bit for each physical page. If the accessed
bit for a page is found to be set, kstaled sets the age of the
corresponding page to zero; otherwise, it increases the age. It
also clears the accessed bit to detect any future access to the
page. If a physical page is mapped in multiple page tables,
kstaled increases the age only if the accessed bit is not set in
any of the page tables.

Our version of kstaled stores the age of a page in a per-
page metadata structure, such that other kernel components
that use page access patterns, like direct reclaim, can avail
themselves of the information that kstaled has already reaped.
We use 8 bits per page to encode the age of a page. As we
pack these bits in the struct page metadata structure already
maintained in Linux kernel, we do not incur any storage
overhead for tracking the ages. We run kstaled at a frequency
of 120 s. With 8-bit ages, we can track up to 8.5 hours (=
255 x 1205s) of ages.

Whenever kstaled updates the age of a page, it also updates
two per-job histograms: (1) cold age histogram, a histogram
over page ages that tracks time T for which pages have not
been accessed and (2) promotion histogram, a histogram
recording the age of the page when it is accessed. These
histograms are exported to the node agent and are used
to determine the cold page age threshold as discussed in
Section 4.3.

To minimize the CPU overhead of kstaled, we empirically
tune its scan period while trading off for finer-grained page
access information. On average, kstaled consumes less than
11% of a single logical CPU core while running as niced
background task.

kreclaimd. Once the node agent consumes the age histograms
built by kstaled and sets the cold age threshold, kreclaimd
compares the age of each page with the cold age threshold
of the job the page belongs to and reclaims all the pages
whose age exceeds the threshold. We reclaim cold pages in
DRAM by moving them to zswap, thus freeing up DRAM
capacity for serving hot application pages. A compressed
page is decompressed when accessed. kreclaimd runs in slack
cycles not used by any other application, realizing memory
gains as an unobtrusive background task.

Note that we only consider pages that are on the least
recently used (LRU) list [3] to be mapped to far memory. For
example, we do not map pages to far memory if they are
marked unevictable or locked in memory (mlocked). This
helps us prevent wasting CPU cycles on unmovable pages.

5.2 Node Agent

The node agent running on each machine (called Borglet in
our cluster management system [40]) dynamically controls



the cold age threshold in a per-job basis. Using the algorithm
described in Section 4.3, it builds a pool of the best cold age
thresholds in the past by reading the kernel statistics every
minute and calculating the smallest cold age threshold for the
past one minute that does not violate the target promotion
rate. Then, it enables zswap S seconds after the beginning
of each job execution by setting the threshold to the K-th
percentile from the pool for the next one minute. The node
agent periodically exports every job’s cold memory statistics
from the kernel to an external database in order to facilitate
offline analysis and monitoring,.

5.3 ML-based Autotuner

Our system exposes K and S, discussed before, as tunable
parameters to adjust the aggressiveness of the control plane.
However, manual one-off tuning of these parameters in-
volves many iterations of trial and error with A/B testing
in production systems, which is risky, time-consuming, and
susceptible to workload behavior shift over time.

In order to address this challenge, we design a pipeline
that autotunes such parameters based on the application
behavior measured across the entire WSC and automatically
deploys new parameters to the production system. The key
ideas behind our autotuner are (1) a fast far memory model,
which facilitates what-if analysis of memory savings and
performance SLO under different parameter configurations,
and (2) design space exploration based on machine learning,
which makes it feasible to identify fleet-wide optimal param-
eter values in less than a day. The following explains the key
components of our autotuner in more detail.

Problem formulation. Finding the optimal values for pa-
rameter K and S is an optimization problem where the goal is
to maximize memory savings while meeting the performance
SLO. In order to express this problem in a way that can be
calculated based on our cold page identification mechanism,
we formulate our problem as maximizing the size of cold
memory across the fleet (Section 4.4), while ensuring that the
fleet-wide promotion rate at the 98th percentile is below the
target SLO (Section 4.2). This allows us to maximize memory
savings while not hurting the application performance at
tail, which is critical for WSC applications.

Importantly, our problem formulation facilitates offline
what-if analysis under different parameter values. Our cold
page identification mechanism relies only on the working set
size, the promotion histogram, and the cold page histogram
of each job over time, all of which are exported to an external
database by the node agent. From this information, we can
calculate the size of cold memory and the promotion rate not
only under the actual cold age threshold used in the fleet but
also for any possible threshold by leveraging the histograms
that contain information about all possible thresholds. In
other words, we can emulate our control algorithm offline
with any parameter configuration and estimate the size of

cold memory and the promotion rate over time under that
configuration.

Fast far memory model. For offline what-if analysis of pa-
rameter values, we build a fast far memory model, a MapReduce-
style [9, 11] distributed pipeline that consumes far memory
traces and runs the control algorithm in Section 4.3 with a
given parameter configuration. Each far memory trace en-
try includes job’s working set size, promotion histogram,
and cold page histogram, aggregated over a 5-minute period.
The traces are collected by an existing telemetry infrastruc-
ture [36]. The pipeline reports the size of cold memory and
98th percentile fleet-wide promotion rate under a given con-
figuration, which serve as the objective and the constraint
of our parameter tuning as explained above.

Our implementation provides excellent scalability because
replaying traces from different jobs is independent, and
hence can be parallelized, and multiple parameter configura-
tions can be modeled in parallel as well. Consequently, our
model is capable of modeling one week of the entire WSC’s
far memory behavior in less than an hour, facilitating rapid
exploration without introducing risks to production systems.

ML-based autotuning. Even with our fast far memory model,
manually exploring the parameter values is still challenging
as there are hundreds of valid configurations and the search
space grows exponentially as we add more parameters to
the system.

In order to address this challenge, we use a state-of-the-
art machine learning algorithm for black-box optimization
called Gaussian Process (GP) Bandit [17, 21, 39]. GP Bandit
learns the shape of search space and guides parameter search
towards the optimal point with the minimal number of trials.
GP Bandit has been effective in solving complex black-box
optimization problems, e.g., optimizing hyperparameters for
deep learning models [17]. To the best of our knowledge,
this is the first use of GP Bandit for optimizing a WSC.

Our pipeline explores the parameter search space by iter-
ating on the following three steps:

1. Run GP bandit over the existing observations and obtain
the parameter configurations to be explored.

2. Run the far memory model with a one week trace from
the entire WSC and estimate the size of cold memory and
the promotion rate under each configuration.

3. Add new observations to the pool and go back to Step 1
until the maximum number of iterations is reached.

The best parameter configuration found by the pipeline is
periodically deployed to the entire WSC. The deployment
happens in multiple stages from qualification to production
with rigorous monitoring at each stage in order to detect bad
configurations and roll back if necessary before causing a
large-scale impact.



The key advantage of using machine learning for parame-
ter autotuning is its adaptability. As we highlighted in Sec-
tion 4, the efficacy of far memory depends heavily on work-
load characteristics and underlying far memory implemen-
tations. This implies that parameter re-tuning is needed for
any change in WSCs, such as deploying different types of far
memory devices, adding more parameters, or fleet behavior
shifts over time. The ML’s capability of learning the problem
with zero guidance greatly simplifies this continuous inno-
vation without worrying about the effort and complexity of
re-tuning the system, which is hard to achieve with manual
tuning or handcrafted heuristics.

6 Evaluation

We deployed our far memory system implementation to
Google’s WSC, spread geographically across multiple data
centers serving hundreds of thousands of production ser-
vices, and measured the metrics to study far memory per-
formance and overheads. Our typical machine configuration
is described in Chapter 3 of [7]. For example, an Intel 18-
core Haswell based 2-socket server has 16 DIMM slots and
supports up to two DIMMs per memory channel.

6.1 Cold Memory Coverage

In this section, we show cold memory coverage as a metric to
represent the efficacy of our system. We define cold memory
coverage as the total size of memory that is stored in far
memory (i.e., compressed) divided by the total size of cold
memory under the lowest possible cold age threshold (120 s
in our system). Conceptually, this is the percentage of cold
memory that is stored in far memory and implies how close
our system is from the upper bound where all pages that
have not been accessed for 120 s or longer can be stored in
far memory with no performance degradation.

Figure 5 shows the fleet-wide average of cold memory
coverage over time, with relevant timeline annotated. The
first stage of the roll-out (A to B) deployed zswap with static
parameter values informed by a limited set of small-scale
experiments. Then, in the second stage (C to D), we rolled
out our autotuner and its parameter value suggestions.

After the initial roll-out, zswap with manually tuned pa-
rameters (between B and C) achieved 15% of stable cold
memory coverage. On top of that, the ML-based autotuner
increased the cold memory coverage to 20%, which corre-
sponds to a 30% increase from the initial stage. This im-
provement showcases the effectiveness of our autotuner as a
system for optimizing WSC configurations without a human
in the loop.

Figure 6 shows the distribution of cold memory coverage
across the machines in the top 10 largest clusters. As in the
cold memory analysis in Section 2.2, we observe a wide range
of cold memory coverage across different machines, even
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Figure 5. Cold memory coverage over time. zswap with
hand-tuned parameters was rolled out during (A) to (B); the
autotuner was rolled out during (C) to (D).
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Figure 6. The distribution of the cold memory coverage
across the machines in the top 10 largest clusters.

within the same cluster. This demonstrates the advantage of
zswap’s flexibility in terms of far memory capacity.

While cold memory coverage varies over machine and
time, the cluster-level ratio has been stable, which allows
us to convert zswap’s cold memory coverage into lower
memory provisioning. With 20% of cold memory coverage,
32% for the upper bound for cold memory ratio (Figure 1),
and 67% cost reduction for compressed pages (Section 6.3),
our system achieves a 4-5% reduction in DRAM TCO in
a transparent manner. These savings are realized with no
difference in performance SLIs, which we discuss next.

6.2 Performance Impact

We measure the performance impact of our system with
two metrics: the promotion rate and the CPU overhead. The
former is our performance SLI for far memory (Section 4),
which can be generalized to other types of far memory de-
vices. The CPU overhead shows the the cycles consumed
using zswap as far memory. Additionally, we also monitored
other application-level performance metrics and did not de-
tect any statistically meaningful difference before and after
the deployment of our system.
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Figure 8. The cumulative distribution of per-job (left) and
per-machine (right) CPU overhead as the percentage of CPU
cycles spent on compression and decompression.

Figure 7 shows the distribution of the promotion rate of
each job normalized to its working set size, before and after
deploying ML-based autotuner. Prior to deploying autotuner,
we manually determined the values of K and S with months-
long A/B experiments of a few candidate configurations from
our educated guess. We observe very low promotion rates
in both the cases; the 98th percentile of the promotion rate
is less than 0.2% of the working set size per minute. This
demonstrates that our cold page identification mechanism ac-
curately classifies infrequently accessed pages to be effective
candidates for far memory.

Also, Figure 7 shows that the autotuner does not violate
the performance SLO, which is defined as the promotion rate
at tail. Moreover, the autotuner slightly increased the pro-
motion rate around 25th to 90th percentiles, that is, found a
configuration that pushes harder only when the performance
SLO has enough margin to increase cold memory coverage.

Figure 8 shows the distribution of the per-job CPU over-
head of our system, which is defined as the CPU cycles spent
on compressing and decompressing pages, normalized to the
CPU usage. These cycles also include those spent on unsuit-
able incompressible cold pages. For 98% of the jobs, 0.01%
and 0.09% of job’s CPU usage is spent on compressing cold
pages and decompressing them on demand, respectively.
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Figure 9. Fleet-wide compression characteristics.

Figure 8 also indicates that the CPU overhead of our sys-
tem at the machine level is very low as well, with 0.001% and
0.005% for decompression and compression, respectively, at
median. From the TCO perspective, this CPU overhead is
negligible compared to the average cold memory coverage
of 20% across the WSC (Figure 5).

6.3 Compression Characteristics

zswap incurs two types of additional cost to the system. First,
compressed pages are still stored in DRAM, which makes
the actual memory savings depend on the compression ra-
tio of data. Second, compressed pages are decompressed on
demand, which incurs a performance overhead when access-
ing compressed pages. This subsection quantifies these two
aspects based on the statistics collected from the entire WSC.

Figure 9a presents the distribution of average compression
ratio of compressed pages in each job, excluding incompress-
ible pages, which are 31% of cold memory on average. Even
though zswap uses a lightweight compression algorithm to
minimize its CPU overheads, it achieves a 3x compression
ratio (i.e., 67% memory savings) at median. The compres-
sion ratio varies from 2-6x, which depends on application
characteristics. For example, multimedia data and encrypted
end-user content are incompressible even when cold.

Figure 9b shows the distribution of average decompression
latency per page, which is measured by aggregating the total
CPU time spent on decompression for each job divided by
the number of decompressed pages during a 5-minute inter-
val. The decompression latency of zswap is measured to be
6.4 s at the 50th percentile and 9.1 ps at the 98th percentile.
Achieving such latencies for zswap-based far memory makes
it competitive to alternative far memory technologies avail-
able today (e.g., tens of ps latency is common for both the
fastest SSDs [38] and remote memory [30]).

6.4 Case Study with Bigtable

Lastly, we present a case study to quantify the impact of our
far memory system on application-level performance metrics
(e.g., instructions per cycle [45]). Our target application is
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Figure 10. Cold memory coverage and performance over-
head of zswap for Bigtable. Negative IPC difference indicates
lower performance in machines with zswap enabled.

Bigtable [10], one of our biggest consumers of DRAM, which
stores petabytes of data in storage with in-memory caching
and serves many production services at a rate of millions of
operations per second.

Figure 10 shows results from A/B testing between ma-
chines with zswap disabled (control group) and enabled (ex-
perimental group). These two groups were constructed by
randomly sampling machines in a cluster. We show two
metrics: cold memory coverage and user-level IPC. User-
level IPC does not count kernel-level instructions, so that
instructions executed by zswap can be excluded from IPC cal-
culation and comparison. Also, site reliability engineers [8]
monitored other application-level performance metrics (e.g.,
queries per second) and observed no violations of application-
defined SLOs.

Figure 10 shows that the IPC difference between the con-
trol and the experimental groups is within noise. Note that,
even with cluster-level A/B testing, noisiness is expected
in WSCs because of different job instances serving differ-
ent queries, machine-to-machine variation, etc. We conclude
that our system does not incur noticeable degradation in
application performance.

Also, zswap achieves 5-15% of the cold memory coverage
for Bigtable, which aligns with the fleet-wide average. Even
within the same application, we observe ~3x difference in
the cold memory coverage over time. Some of this variation
comes from the diurnal nature of the load (e.g., lower request
rate during nights resulting in more cold memory), but the
behavior is not always predictable. This again demonstrates
the complexity of provisioning the far memory capacity.

7 Related Work

To the best of our knowledge, we present the first end-to-
end system for software-defined far memory deployed at
scale. One of the key related ideas on memory compression
was proposed by Ekman and Stenstrom [15]. They argue
that performing decompression in software is not fruitful

since decompression latencies will always be significant com-
pared to the application runtime. However, we show that
compression/decompression in software can be done while
not impacting application runtime, translating to substantial
TCO savings. Additionally, we use machine learning to auto-
matically determine aggressive cold page criteria to increase
memory savings while meeting our SLOs.

Memory compression. Memory compression is a well-known
technique that has been used for more than 20 years in desk-
top systems to over-commit memory capacity [16, 33, 43].
Memory capacity generated through compression in desk-
tops can be used when the system is low on memory. Such
a reactive technique can cause severe performance degra-
dation in WSCs, which we observed during our initial de-
ployment phase (Section 3.2). On the other hand, in WSCs,
memory savings from proactively compressing cold pages
translate to cluster-level memory capacity savings, and hence
reducing DRAM CapEx (Section 6.1).

Software-managed far memory. Xue et al. [44] proposed
an adaptive persistent memory scheme for augmenting mem-
ory capacity when machine is under memory pressure. In
our work, however, we designed a proactive far memory
usage scheme to mindfully avoid OS memory reclaim slow
paths during memory allocation requests, which otherwise
can hurt tail behavior in WSCs. Agarwal et al. [5] proposed
Thermostat, a cold page classification mechanism designed
specifically for huge page 2 MB mappings. It introduces ex-
tra page faults on a sample of randomly selected cold pages
to measure the performance impact of mapping cold page
into far memory. In contrast, our technique to estimate per-
formance impact is based on promotion histograms derived
from PTE accessed bits that covers both huge and regular
pages (critical for production systems where fragmentation
can limit huge pages). Remote memory is another approach
to software-managed far memory [30, 31]. However, remote
memory deployment faces many unsolved challenges as dis-
cussed by Aguilera et al. [6] that need to be solved before
realizing memory TCO savings in practice.

Hardware-based far memory. Several researchers have pro-
posed and studied hardware-based far memory [22, 23, 26,
34]. However, adoption of such proposals at WSC scale is
slow and challenging as they often come with the require-
ment of developing, testing, qualifying, and deploying a
new server platform. For example, Intel Optane DC Persis-
tence Memory [20] is compatible only with new Intel CPUs
equipped with special memory controllers. Furthermore, the
adoption rate of far memory can be limited if it cannot be
retrofit to older machines, which often form a large fraction
of the production server fleet [7]. Our software-defined far
memory solution instead works well with existing server
platforms. As hardware-based far memory devices become
readily available with a spectrum of latency, bandwidth, and



density characteristics, they can augment memory TCO sav-
ings in addition to our zswap-based software approach.

Cold data detection. Accessed-bit-based cold/stale page de-
tection technique is a well-known idea [28, 42]. We build our
mechanisms on top of such proposals and track the per-page
age of all eligible pages at runtime with no storage overhead
and tolerable CPU consumption.

Application-driven far memory usage. Eisenman et al. [14]
presented an application-driven approach to use far mem-
ory in a real datacenter environment. However, with the
diversity of applications that run in a WSC, it is not practical
to modify each of them individually. This limits wider far
memory adoption. Our application-agnostic system design
enables us to reap TCO savings without involving any of
our customers. Other approaches based on application profil-
ing, user-level APIs for far memory allocation and migration
pose similar customer adoption challenges [12, 13, 41].

8 Conclusion

WSC designers today face a significant memory wall that
motivates new designs and optimizations: how do we get
increased memory capacity at lower costs without impacting
performance and reliability? In this paper, we discussed one
such new design, an approach to creating a software-defined
far memory tier, that addresses this challenge.

We showed that a proactive approach to identify cold
pages can effectively utilize far memory. Our software-defined
far memory solution built by compressing cold pages on top
of the readily available Linux zswap mechanism can com-
press memory by 3x or more, effectively creating a new far
memory tier that is cheaper by 67% or more than existing
memory, with access times in single-digit ps for decompres-
sion. Our end-to-end system design uses a new model for
identifying cold pages under well-defined performance SLOs
and features new mechanisms in the kernel and the node
agent to implement such a model at warehouse scale. We
also propose a new approach to leveraging machine learning
to autotune our system without a human in the loop.

Our system has been in deployment in Google’s WSC for
several years and our results show that this far memory tier
is very effective in saving memory CapEx costs without nega-
tively impacting application performance. But perhaps more
importantly, it achieves these benefits transparently to the
application developers and can be deployed both on existing
and new machine generations, both important considera-
tions for real-world production systems. Additionally, since
this approach is software-based, it can be tuned dynamically
to respond to the churn and diversity in WSC workloads.

Looking ahead, there are several areas of future work. The
cold memory coverage discussed in the paper, although sub-
stantial at warehouse scale, is still very conservative. Our

SLOs were very stringent to avoid impacting application per-
formance and to minimize cycles spent on compression. Go-
ing beyond the promotion rate to looking at end-application
performance metrics in our control plane presents signif-
icant opportunities for additional savings. Similarly, more
aggressive ML-based tuning can provide additional bene-
fits. Furthermore, hardware support for compression, such
as through a tightly-coupled accelerator, can increase both
the number of pages compressed and the compression ra-
tio (through more complex compression algorithms), corre-
spondingly increasing both coverage and cost savings dra-
matically.

Finally, the interaction between hardware and software
far memory is an interesting area. Our software-defined
far memory based on compression is surprisingly competi-
tive in performance and price-performance ratio to newer
non-volatile storage solutions already available in the mar-
ket, such as Intel Optane SSD [20] or Samsung Z-SSD [38].
Emerging hardware technologies such as Intel Optane DC
Persistent Memory [20] have sub-us latencies [32], but the
price-performance trade-offs of deploying such technologies
is yet to be explored. The lower access latencies of these latter
technologies have the potential to further relax the defini-
tion of cold memory, potentially targeting more infrequently
accessed memory, but with better performance trade-offs.
Ultimately, an exciting end state would be one where the
system uses both hardware and software approaches and
multiple tiers of far memory (sub-ps tier-1 and single-us
tier-2), all managed intelligently with machine learning and
working harmoniously to address the DRAM scaling chal-
lenge.
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