
Dimorphic Computing: Sustainable Performance Through Thick and Thin
Andrés Lagar-Cavilla†, Niraj Tolia?, Rajesh Balan?, Eyal de Lara†, M. Satyanarayanan?, David O’Hallaron?

†University of Toronto,?Carnegie Mellon University

1 Introduction
It is known that thick and thin clients have complemen-

tary strengths and weaknesses. Thick clients offer crisp in-
teractive response even for tightly-coupled applications with
rich GUIs. However, computationally intensive tasks are
limited to using only the resources locally available. Thin
clients, on the other hand, are attractive in CPU-intensive and
data-intensive situations because application execution can
occur on powerful remote compute servers or close to large
data sets. Unfortunately, the physical separation between
application execution and user interaction in thin clients
can lead to poor application responsiveness, especially for
tightly-coupled applications with rich GUIs.

As a result, neither thin nor thick clients are able to fully
address the needs of a large class of applications that combine
heavy computational demands with tightly-coupled interac-
tive engines. Examples of these applications are found in the
domains of digital animation, scientific computing, computer
assisted design (CAD), or video editing. These applications
typically interleave compute stages with interaction intensive
stages. For example, an application might take many minutes
to compute an optimized molecular model whose properties
are then studied in an interactive visualization phase. A new
model setting is then chosen and the sequence repeats itself.

We describe a new model of computing calleddimor-
phic computing, that combines the strengths of thick and thin
clients. During resource-intensive application phases, a di-
morphic client behaves like a thin client. During interaction-
intensive phases, it behaves as a thick client. Transitions
are completely transparent and seamless to the user, who
just sees excellent performance at all times:short comple-
tion timefor computationally-intensive phases, andcrisp re-
sponsefor interaction-intensive phases.

We introduce an open-source tool calledAgentISRthat
realizes the model of dimorphic computing. It leverages Vir-
tual Machine (VM) migration technology to move the ex-
ecution site of an application, and complements it with an
specialized mechanism for VM disk state transfer and an au-
tomated policy for triggering migrations. While there have
been many previous approaches to computation mobility,
AgentISR presents four key improvements. First, applica-
tions do not have to be modified, recompiled, or relinked.
This greatly simplifies real-world deployments where use of
proprietary applications may be unavoidable. Second, the ap-
plication does not have to be written in a specific language,
nor does it need to be built using specific libraries. By re-
quiring almost nothing of applications except the existence
of distinct computation and interaction phases, AgentISR in-

vites the broadest possible usage. Third, our approach is es-
pecially clean in its separation of policy and mechanism. The
code to decide when to migrate an application is completely
independent from the code that implements the relocation.
Finally, our approach is transparent to the end user.

2 Design and Implementation
AgentISR uses the Xen Virtual Machine Monitor

(VMM) [2] to implement the concept of anagent, a mi-
gratable embodiment of an application1. AgentISR isolates
an unmodified application in its own VM and exploits vir-
tual machine migration techniques to dynamically relocate
the agent across physical hosts, thus switching between thick
and thin client computing. Because applications execute on
top of the OS for which they were developed, AgentISR can
run any application binary without requiring modifications.
VM migration is achieved by suspending a running VM and
transferring the image to another host where it is resumed,
or by iteratively copying the live VM’s memory in a process
known as live-migration [3]. Live migration has the advan-
tage of only suspending the VM for a few seconds, rendering
the transition effectively transparent to the user.

While standard migration techniques focus on transfer-
ring the VM’s memory image, the virtual disk of an agent
(typically several GBs in size) needs to be efficiently mi-
grated as well. For this, AgentISR uses a custom distributed
block device calledWANDisk. WANDisk allows for the
availability of persistent caches of the VM disk at the des-
tination hosts, and the efficient transfer of the deltas between
caches upon VM migration. A VM disk cache is partitioned
into chunks of 128 KB, and a chunk table is used to keep
track of versioning and ownership information. The chunk
table is used to identify stale chunk misses and trigger the
appropriate updates on-demand.

To decide when to migrate an agent, AgentISR uses an
automated migration policy. The policy gathers and pro-
cesses VM resource consumption data from a set of sensors;
standard sensors include CPU utilization, network usage, and
interactivity measurements. The sensor readings trigger tran-
sitions in a finite state machine. Each state of the machine
represents an application’s specific need and an associated
location: by migrating the agent to that location the best
performance is achieved. Agent state machines are defined
by application-specific profiles; profile generation does not
involve any application modifications, and can be done by
users, third-parties, or even the developers themselves. How-
ever, we envision the deployment of machine learning algo-
rithms to automate the process of decision making.

1Other VMMs like VMWare that provide similar functionality could also be used.

1

3 Validation Approach
In this section we discuss initial results of our AgentISR

evaluation. We are currently experimenting with four differ-
ent applications that are used for video editing, 3D anima-
tion, quantum chemistry, and earthquake modeling. In the
interests of space, we only present the results fromQuakeViz,
an interactive visualization of a 500MB output file produced
by a simulation of an earthquake in an 80×80×12 km3 re-
gion of the Los Angeles basin [1]. In a processing intensive
crunch phase, QuakeViz extracts ground motion isosurfaces
from this dataset, and applies several transformations to gen-
erate a visually appealing result. An ensuing interactivevisu-
alization phaselets users examine the isosurfaces by zoom-
ing, rotating, and panning.

To evaluate AgentISR’s performance, we conducted a set
of controlled experiments using traces of long interactive user
sessions. The purpose of these experiments was to measure
both crunch and visualization phase performance. We em-
ployed a session replay mechanism to replay traces of previ-
ously recorded sessions under three execution models:

Thick Client : Runs the application on the user’s desktop,
which connects to QuakeViz’s dataset via a WAN link.

Thin Client : Executes the application on a machine that is
connected to the dataset via a Gigabit link.

AgentISR: Migrates the application between the above two
machines, with an artificially optimal migration policy.

For the above three models, the bandwidth on the WAN
link was set at 20 Mbit/s and the latency was set to either 33,
66, or 100 ms. Figure 1 shows the total time to completion
results. The results shows the clear disadvantages of execut-
ing the crunch phase at the user’s desktop. QuakeViz needs
to fetch a large dataset through the WAN link, impacting time
to completion by as much as 13 minutes. Both the AgentISR
and thin client cases fare significantly better, as they execute
the crunch phase at a location closer to the dataset.

Network RTT Thick Thin AgentISR
33 ms 51.8(0.0) 46.8(0.1) 47.9(0.2)

66 ms 57.4(0.2) 46.7(0.1) 47.0(0.1)

100 ms 63.4(0.6) 46.7(0.0) 47.4(0.1)

Each data point is the mean of three trials; standard devia-
tions are in parentheses. The visualization phase took approx-
imately 21 minutes for all experiments.

Figure 1: Total Time to Completion
Figure 2 shows the cumulative distribution of frame

buffer update rates, obtained by measuring the frames per
second yielded by the response of each input during the vi-
sualization phase (mainly mouse button presses and releases
while rotating or zooming an isosurface.) AgentISR offers
interactive performance similar to thick client execution, and
dramatically better than thin client computing. Even in the
worst case of 100 ms RTT, approximately 70% of the event
responses offer smooth frame rates, closely matching those
obtained with thick client execution. Thin client computing

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Frame Buffer Updates / Sec

Thick
AgentISR, 33ms
AgentISR, 66ms

AgentISR, 100ms
Thin, 33ms
Thin, 66ms

Thin, 100ms

Figure 2: CDF of Frame Buffer Updates Rates

Network RTT Total Migration Time Suspend Time
33 ms 165.0(0.7) 2.9 (0.3)

66 ms 323.5(1.1) 6.6 (1.2)

100 ms 436.3(1.5) 6.9 (1.9)

These results show the time (in seconds) taken to complete
live migration for QuakeViz. Each data point is the mean of
three trials; standard deviations are in parentheses.

Figure 3: Migration Performance
is, by nature, unable to provide the high frame rates that re-
sult from the ability to leverage local computing resources.
In particular, most interactive responses yield at most half
the frame rates than in the thick client or AgentISR cases.

The disparity in frame rates for the AgentISR cases is a
direct result of relocation time. Figure 3 shows that for higher
network RTTs, more time is spent in Thin Client mode dur-
ing live-migration. The suspend column indicates the time
for the last iteration of live-migration, for which the agent is
unresponsive: in all cases it is a negligible figure. It is well-
known that the effects of increased RTT can be factored out
through TCP buffer-size adjustment, effectively reducing all
migration times (and frame rates curves) to the 33ms case.

In conclusion, AgentISR is a system that enables dimor-
phic computing through the automated use of virtual machine
migration techniques. AgentISR achieves good performance
for compute-intensive stages and provides a crisp interactive
experience during intensely interactive phases. These bene-
fits are achieved even for demanding network conditions and
in a manner transparent to end-users and developers.

References
[1] A KCELIK , V., BIELAK , J., BIROS, G., EPANOMERITAKIS, I., FERNANDEZ, A.,

GHATTAS, O., KIM , E. J., LOPEZ, J., O’HALLARON , D., TU, T., AND UR-
BANIC , J. High resolution forward and inverse earthquake modeling on terasacale
computers. InProc. ACM/IEEE Supercomputing(Phoenix, AZ, Nov. 2003).

[2] BARHAM , P., DRAGOVIC, B., FRASER, K., HAND , S., HARRIS, T., HO, A.,
NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and the art of virtual-
ization. InProc. 19th ACM Symposium on Operating Systems Principles (SOSP)
(Bolton Landing, NY, Oct. 2003), ACM Press, pp. 164–177.

[3] CLARK , C., FRASER, K., HAND , S., HANSEN, J. G., JUL , E., LIMPACH, C.,
PRATT, I., AND WARFIELD, A. Live migration of virtual machines. InProc. 2nd
USENIX Symposium on Networked Systems Design and Implementation (NSDI)
(Boston, MA, May 2005).

2

