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ABSTRACT
Modern cloud computing infrastructures use virtual machine moni-
tors (VMMs) that often include a large and complex administrative
domain with privileges to inspect client VM state. Attacks against
or misuse of the administrative domain can compromise client secu-
rity and privacy. Moreover, these VMMs provide clients inflexible
control over their own VMs, as a result of which clients have to
rely on the cloud provider to deploy useful services, such as VM
introspection-based security tools.

We introduce a new self-service cloud (SSC) computing model
that addresses these two shortcomings. SSC splits administrative
privileges between a system-wide domain and per-client adminis-
trative domains. Each client can manage and perform privileged
system tasks on its own VMs, thereby providing flexibility. The
system-wide administrative domain cannot inspect the code, data
or computation of client VMs, thereby ensuring security and pri-
vacy. SSC also allows providers and clients to establish mutually
trusted services that can check regulatory compliance while re-
specting client privacy. We have implemented SSC by modifying
the Xen hypervisor. We demonstrate its utility by building user do-
mains to perform privileged tasks such as memory introspection,
storage intrusion detection, and anomaly detection.
Categories and Subject Descriptors. D.4.6 [Operating Sys-
tems]: Security and Protection
General Terms. Design, Experimentation, Management, Security
Keywords. cloud computing, security, trust, privacy

1. INTRODUCTION
Modern cloud infrastructures rely on virtual machine monitors
(VMMs) to flexibly administer and execute client virtual machines
(VMs). VMMs implement a trusted computing base (TCB) that vir-
tualizes the underlying hardware (CPU, memory and I/O devices)
and manages VMs. In commodity VMMs, such as Xen and Hyper-
V, the TCB has two parts—the hypervisor and an administrative
domain. The hypervisor directly controls physical hardware and
runs at the highest processor privilege level. The administrative do-
main, henceforth called dom0, is a privileged VM that is used to
control and monitor client VMs. Dom0 has privileges to start/stop
client VMs, change client VM configuration, monitor their physical
resource utilization, and perform I/O for virtualized devices.

Endowing dom0 with such privileges leads to two problems:
• Security and privacy of client VMs. Dom0 has the privilege to
inspect the state of client VMs, e.g., the contents of their vCPU
registers and memory. This privilege can be misused by attacks
against the dom0 software stack (e.g., because of vulnerabilities
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or misconfigurations) and malicious system administrators. This is
a realistic threat [10, 11, 12, 13, 14, 19, 23], since dom0 typically
executes a full-fledged operating system with supporting user-level
utilities that can be configured in complex ways.
• Inflexible control over client VMs. Virtualization has the poten-
tial to enable novel services, such as security via VM introspec-
tion [6, 18], migration [8] and checkpointing. However, the adop-
tion of such services in modern cloud infrastructures relies heav-
ily on the willingness of cloud service providers to deploy them.
Clients have little say in the deployment or configuration of these
services. It is also not clear that a “one size fits all” configuration
of these services will be acceptable to client VMs. For example,
a simple cloud-based security service that checks network packets
for malicious content using signatures will not be useful to a client
VM that receives encrypted packets. The client VM may require
deeper introspection techniques (e.g., to detect rootkits), which it
cannot deploy on its own. Even if the cloud provider offers such an
introspection service, the client may be reluctant to use it because
dom0’s ability to inspect its VMs may compromise its privacy.

Recent work has investigated the use of nested virtualization [4]
to develop solutions for each of the above problems. The Cloud-
Visor project [52] uses nesting to protect client VMs from an un-
trusted dom0, thereby addressing security and privacy concerns.
The XenBlanket project [51] uses nesting to address the problem of
inflexible control and cloud provider “lock-in,” and allows clients
to implement their own services. However, while these projects
address the individual concerns above, they do not address both
of them simultaneously. In theory, it may be possible to combine
the goals of these projects by recursively nesting one within the
other (i.e., two levels of nested virtualization). However, on com-
modity x86 hardware, the use of nested virtualization imposes un-
wanted performance penalties on client VMs (as compared to the
case of non-nested virtualization). These overheads can grow ex-
ponentially as client VMs are placed at deeper levels of nesting
because of the need to emulate traps within each nested hypervisor
(e.g., see [25, Section 3]). Therefore, a straightforward combination
of CloudVisor and XenBlanket will likely be unpalatable to clients.

We take a fundamentally different approach to addressing these
problems. Our main contribution is a new Self-service Cloud (SSC)
Computing model that simultaneously addresses the problems of
security/privacy and inflexbile control. Our main observation is that
both of the above problems are a direct consequence of the way in
which commodity hypervisors assign privilege to VMs. SSC intro-
duces a novel privilege model that reduces the power of the ad-
ministrative domain and gives clients more flexible control over
their own VMs. SSC’s privilege model splits the responsibilities
traditionally entrusted with dom0 between a new system-wide ad-
ministrative domain (Sdom0) and per-user administrative domains
(Udom0s), service domains (SDs) and mutually-trusted service do-
mains (MTSDs) that are described in more detail below. By intro-
ducing a new privilege model, SSC addresses both of the above
problems without requiring nested virtualization and the perfor-
mance overhead that it entails.

Udom0 (User dom0) is a per-user administrative domain that
can monitor and control the set of VMs of a particular client. When
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Figure 1. The design of a Self-service Cloud (SSC) comput-
ing platform. SSC splits the TCB of the system (indicated us-
ing the shaded components) into a system-level TCB, with the
hardware, the SSC hypervisor, and the domain builder, and a
client-level TCB, with the Udom0 and service domains.

a client attempts to start a VM in SSC, it is assigned its own Udom0
domain. This domain creates the user VMs that perform the actual
work for the client (UdomUs). Udom0 can delegate its privileges
to service domains (SDs), which are special-purpose user domains
that can perform privileged system services on UdomUs. Clients
can leverage SDs to implement services such as memory introspec-
tion to verify VM integrity, intrusion detection, and storage encryp-
tion. In a traditional cloud, these services would be implemented in
dom0, and would have to be deployed by the cloud provider. Thus,
SSC allows clients to flexibly deploy new services and control their
own VMs using SDs.

Sdom0 (System dom0) is the system-wide administrative do-
main in SSC. Sdom0 retains the privileges to start/stop Udom0 do-
mains upon request by clients, and to run drivers for virtualized de-
vices. Sdom0 manages resources, including scheduling time-slices
and I/O quotas. SSC’s privilege model disallows Sdom0 from in-
specting the state of the client’s domains (Udom0s, SDs, and Udo-
mUs), thereby ensuring the security and privacy of client VMs.

Although this privilege model allows SSC to achieve our stated
goals, in practice, cloud providers typically require some ability
to control client VMs for regulatory compliance. For example,
providers may wish to ensure that clients are not misusing their
cloud infrastructure to host malicious software [30]. To do so, the
cloud provider must have the ability to inspect client VMs, but
this may conflict with the client’s privacy goals. There is often
such a tension between the client’s privacy policies and the cloud
provider’s need to retain control over client VMs executing on its
platform.

SSC resolves this tension by introducing mutually-trusted ser-
vice domains (MTSDs). The cloud provider and the client mutually
agree upon policies and mechanisms that the provider will use to
control the client’s VMs. The cloud provider implements its code
in a MTSD, which runs similar to a SD, and can therefore inspect
a client’s VMs. Clients can leverage trusted computing technol-
ogy [5, 21, 24] to verify that a MTSD only runs code that was
mutually agreed-upon with the cloud provider. Clients that have
verified the trustworthiness of the platform and the MTSD can rest
assured their privacy will not be compromised. Likewise, the cloud
provider can ensure liveness of MTSDs for regulatory compliance.

Figure 1 depicts the design of SSC. We use the term meta-
domain to refer to the collection of a client’s domains (Udom0,
UdomUs, SDs, and MTSDs). Only Udom0 holds privileges over
UdomUs in its meta-domain, but can delegate specific privileges to
SDs to carryout specialized services. To bootstrap meta-domains,
SSC employs a specialized domain builder (domB) (akin to the
design of Murray et al. [33]). DomB is entrusted with the task of

creating VMs, a privilege that no longer resides with the system-
wide administrative domain (Sdom0). Section 3 presents a detailed
overview of the design of SSC.

We have implemented an SSC-compliant VMM by modifying
Xen (v3.4.0). We demonstrate SSC’s utility by showing that SDs
can be used to implement a variety of services (Section 4). To
summarize, the main contributions of this paper are:
• The SSC model. SSC’s privilege model allows clients to ad-
minister their own VMs, while disallowing the cloud’s adminis-
trative domain from inspecting client VM state. This new privilege
model addresses both client concerns discussed earlier, i.e., secu-
rity/privacy of VMs, and inflexible control over VMs. Unlike re-
cent work to address these concerns [51, 52], SSC does not rely on
nested virtualization. Consequently, client VMs are able to enjoy
the benefits of SSC with negligible performance overheads.
• Service domains. SDs allow clients to perform privileged system
tasks on their VMs. We demonstrate case studies showing that
SDs can be used to implement a variety of system services that
are traditionally implemented in dom0. Consequently, SDs provide
clients more flexible control over their VMs.
• Mutually-trusted service domains. MTSDs execute privileged
services that check regulatory compliance in a manner that is mu-
tually agreed upon between the cloud provider and the client. They
balance the tension between the cloud provider’s need to retain con-
trol and the client’s security and privacy goals.

2. THREAT MODEL
SSC’s threat model is similar to those used in recent work on pro-
tecting client VMs in the cloud [26, 40, 52], and differentiates be-
tween cloud service providers and cloud system administrators.
Cloud providers are entities such as Amazon EC2 and Microsoft
Azure, who have a vested interest in protecting their reputations.
On the other hand, cloud system administrators are individuals en-
trusted with system tasks and maintaining the cloud infrastructure.
To do so, they have access to dom0 and the privileges that it entails.

We assume that cloud system administrators are adversarial (or
could make mistakes), and by extension, that the administrative do-
main is untrusted. Administrators have both the technical means
and the monetary motivation to misuse dom0’s privileges to snoop
client data at will. Even if system administrators are benign, attacks
on client data can be launched via exploits directed against dom0.
Such attacks are increasing in number [10, 11, 12, 13, 14, 23] be-
cause on commodity VMMs, dom0 often runs a full-fledged op-
erating system, with a complex software stack. Likewise, miscon-
figured services in dom0 can also pose a threat to the security and
privacy of client data.

SSC protects clients from threats posed by exploits against
Sdom0 and cloud administrators who misuse Sdom0’s privileges.
SSC prevents Sdom0 from accessing the memory contents of client
VMs and the state of their virtual processors (vCPUs). This pro-
tects all of the client’s in-memory data, including any encryption
keys stored therein. SSC’s core mechanisms by themselves do not
prevent administrators from snooping on network traffic or per-
sistent storage. Security-concious clients can employ end-to-end
encryption to protect data on the network and storage. We show
how clients can achieve this by implementing suitable SDs (Sec-
tion 4.1). Packet headers need not be encrypted; after all, network
middleboxes inspect and mangle packet headers.

SSC assumes that the cloud service provider is trusted. The
provider must supply a TCB running an SSC-compliant VMM. We
assume that the physical hardware is equipped with an IOMMU
and a Trusted Platform Module (TPM) chip, using which clients
can obtain cryptographic guarantees about the software stack ex-
ecuting on the machine. The cloud provider must also implement



procedural controls (security guards, cameras, auditing procedures)
to ensure the physical security of the cloud infrastructure in the data
center. This is essential to prevent hardware-based attacks, such as
cold-boot attacks, against which SSC cannot defend. SSC does not
attempt to defend against denial-of-service attacks. Such attacks are
trivial to launch in a cloud environment, e.g., a malicious adminis-
trator can simply configure Sdom0 so that a client’s VMs is never
scheduled for execution, or power off the server running the VMs.
Clients can ameliorate the impact of such attacks via off-site repli-
cation. Finally, SSC does not aim to defend against subpoenas and
other judicial instruments served to the cloud provider to monitor
specific clients.

3. THE SSC PLATFORM
We now describe the design and implementation of the SSC plat-
form, focusing on the new abstractions in SSC, their operation, and
SSC’s privilege model.

3.1 Components
As Figure 1 shows, an SSC platform has a single system-wide
administrative domain (Sdom0) and a domain-building domain
(domB). Each client has its own administrative domain (Udom0),
which is the focal point of privilege and authority for a client’s
VMs. Udom0 orchestrates the creation of UdomUs to perform
client computations, and SDs, to which it delegates specific priv-
ileges over UdomUs. SSC prevents Sdom0 from inspecting the
contents of client meta-domains.

One of the main contributions of the SSC model is that it
splits the TCB of the cloud infrastructure in two parts, a system-
level TCB, which consists of the hypervisor, domB, BIOS and the
bootloader, and is controlled by the cloud provider, and a client-
level TCB, which consists of the client’s Udom0, SDs, and MTSDs.
Clients can verify the integrity of the system-level TCB using
trusted hardware. They are responsible for the integrity of their
client-level TCBs. Any compromise of a client-level TCB only
affects that client.

Sdom0 runs all device drivers that perform actual I/O and wields
authority over scheduling and allocation decisions. Although these
privileges allow Sdom0 to perform denial-of-service attacks, such
attacks are not in our threat model (Section 2); consequently,
Sdom0 is not part of the TCB.

The components of SSC must be able to communicate with each
other for tasks such as domain creation and delegating privileges. In
our prototype, VMs communicate using traditional TCP/IP sockets.
However, domB receives directives for domain creation through
hypervisor-forwarded hypercalls (see Figure 2 and Figure 3). Im-
ages of domains to be created are passed by attaching storage vol-
umes containing this information.

3.2 Bootstrapping
Hosts in the cloud infrastructure are assumed to be equipped with
TPM and IOMMU hardware, which is available on most modern
chipsets. We assume that the TPM is virtualized, as described in
prior work [5]. The supporting user-level daemons for the virtu-
alized TPM (vTPM) run within domB, which is in the TCB, and
interact with the hardware TPM on the physical host. The pro-
tocols described in this section assume client interaction with a
vTPM instance. We use the vTPM protocols as described in the
original paper [5], although it may also be possible to use recently-
proposed variants [15]. The vTPM can cryptographically attest the
list of software packages loaded on a system in response to client
requests; such attestations are called measurements [39].

During system boot, the BIOS passes control to a bootloader,
and initializes the hardware TPM’s measurement. In turn, the boot-

loader loads our modified version of the Xen hypervisor, Sdom0’s
kernel and ramdisk, and domB’s kernel and ramdisk. It also adds
entries for the hypervisor and domB to the measurement stored in
the TPM’s PCR registers. The hypervisor then builds Sdom0 and
domB. Finally, it programs the IOMMU to allow Sdom0 access
to only the pages that it owns. Following bootstrap and initializa-
tion, the hypervisor unpauses Sdom0 and schedules it for execu-
tion. Sdom0 then unpauses domB, which awaits client requests to
initialize meta-domains. SSC forbids Sdom0 from directly inter-
acting with the TPM; all TPM operations (both with the hardware
TPM and vTPM instances) happen via domB.

Sdom0 starts the XenStore service, which is a database used
traditionally by Xen to maintain information about virtual device
configuration. Each user VM on the system is assigned its own
subtree in XenStore with its virtual device configurations.

3.3 Building Client Meta-Domains
In SSC, domB receives and processes all requests to create new
domains, including Udom0s, UdomUs, SDs, and MTSDs. Client
requests to start new meta-domains are forwarded to domB from
Sdom0. In response, domB creates a Udom0, which handles cre-
ation of the rest of the meta-domain by itself sending more re-
quests to domB (e.g., to create SDs and UdomUs). To allow clients
to verify that their domains were built properly, domB integrates
domain building with standard vTPM-based attestation protocols
developed in prior work [5, 39].

Udom0. Upon receiving a client request to create a new meta-
domain, Sdom0 issues the C U0 hypercall containing
a handle to the new domain’s bootstrap modules (kernel image,
ramdisk, etc.). DomB builds the domain and returns to the client
an identifier of the newly-created meta-domain. In more detail, the
construction of a new meta-domain follows the protocol shown in
Figure 3(a). This protocol achieves two security goals:
(1) Verified boot of Udom0. At the end of the protocol, the client
can verify that the Udom0 booted by the SSC platform corresponds
to the image supplied in step 1 of Figure 3(a). To achieve this
goal, in step 1, the client supplies a challenge (nTPM) and also
provides hash(Udom0 image), encrypted under the vTPM’s public
key (AIK). These arguments are passed to domB, as part of the C-
 U0 hypercall in step 2. In turn, DomB requests the vTPM to
decrypt the content enciphered under its public key, thereby obtain-
ing hash(Udom0 image). DomB then creates the domain after ver-
ifying the integrity of the VM image (using hash(Udom0 image)
and Sigclient), thereby ensuring that Sdom0 has not maliciously al-
tered the VM image supplied by the client. It then returns to the
client an identifier of the newly-created meta-domain, a digitally-
signed measurement from the vTPM (containing the contents of the
vTPM’s PCR registers and the client’s challenge) and the measure-
ment list. The client can use this to verify that the domain booted
with the expected configuration parameters.
(2) Bootstrapping SSL channel with client. In SSC, the network
driver is controlled by Sdom0, which is untrusted, and can eaves-
drop on any cleartext messages transmitted over the network.
Therefore, the protocol in Figure 3(a) also interacts with the client
to install an SSL private key within the newly-created Udom0.
This SSL private key is used to authenticate Udom0 during the
SSL handshake with the client, and helps bootstrap an encrypted
channel that will then be used for all further communication with
the client.

Installation of the SSL private key proceeds as follows. In
step 1, the client supplies a fresh symmetric key (freshSym), and
a nonce (nSSL), both encrypted under the vTPM’s public key. In
step 2, domB creates Udom0 after checking the integrity of the
Udom0 image (using Sigclient). When domB creates Udom0, it re-



• C U0 ( , , E P, SC)
Description: This hypercall is issued by Sdom0 to initiate a client meta-domain by creating a Udom0. The   argument is a
handle to a block device provided by Sdom0 to the client to pass Udom0 kernel image, ramdisk and configuration to domB. The 
supplied by the client is combined with the vTPM’s measurement list, which is returned to the client for verification following domain
creation. E P denotes a set of parameters that are encrypted under the vTPM’s AIK public key. SC is the client’s digital
signature of key parameters to the C U0 call. These parameters are used by the protocol in Figure 3(a) to bootstrap a secure
communication channel with the client after Udom0 creation.

• C U ( , )
Description: Issued by Udom0 to provide VM images of SDs or UdomUs to domB. The parameters   and  are as
described above.

• C MTSD ( ,  ,  ,  ,  )
Description: Sdom0 uses this hypercall to start an MTSD within a client’s meta-domain. The configuration parameters, which are
included in the block device specified by  , contain the command-line arguments used to initiate the service provided by
the MTSD. MTSDs are also assigned specific privileges over UdomUs in the client meta-domain. This hypercall returns an identifier
for the newly-created MTSD. It also returns two signed vTPM measurements, each appended with the nonces of the provider and the
client.

• G P (SD , UU ,  )
Description: This hypercall is used by Udom0s to delegate specific privileges to a SD over an UdomU. Udom0s can issue this
hypercall only on SDs and UdomUs within their own meta-domain.

Figure 2. Summary of new hypercalls introduced to enable SSC. Figure 3 shows their usage.

(a) Protocol for Udom0 creation (initializing a new meta-domain) and bootstrapping an SSL communication channel
1. client→ Sdom0 : nTPM, Udom0 image, EncAIK(freshSym||nSSL||hash(Udom0 image)), Sigclient
2. Sdom0→ domB : C U0(Udom0 image, nTPM, EncAIK(freshSym||nSSL||hash(Udom0 image)), Sigclient)→ IDclient
3. domB→ client : IDclient, TPMSign(nTPM||PCR), ML
4. domB→ Sdom0 : Unpause Udom0 (denoted by IDclient) and schedule it for execution
5. Udom0→ client : nSSL
6. client→ Udom0 : EncfreshSym(SSLpriv)
Notes: In step 1, Udom0 image is passed via a block device provided by Sdom0 to the client. The key AIK denotes the public part of
the vTPM’s AIK (attestation identity key), freshSym is a fresh symmetric key chosen by the client, and Sigclient is the digital signature,
under the client’s private key, of freshSym||nSSL||hash(Udom0 image)||nTPM. In step 2, when domB executes C U0, it requests
the vTPM to decrypt EncAIK(. . .), checks the hash of Udom0 image, verifies the client’s digital signature Sigclient, and places freshSym
and nSSL into Udom0’s memory. In step 3, ML denotes the measurement list, while PCR denotes the content of the vTPM’s platform
control register (storing the measurements); TPMSign(. . .) denotes that the corresponding content is signed with the private part of
the vTPM’s AIK key. IDclient is a unique identifier assigned to the newly created Udom0 (and meta-domain). In steps 5 and 6, Udom0
interacts with the client, who sends it the SSL private key (denoted by SSLpriv) encrypted under freshSym. Udom0 decrypts this to
obtain SSLpriv, which is then used for all future SSL-based communication with the client.

(b) Protocol for UdomU and SD creation
1. client→ Udom0 : nclient, VM image (this message is sent via SSL)
2. Udom0→ domB : C UD(VM image, nclient)→ IDV M
3. domB→ Udom0 : IDV M , TPMSign(nclient ||PCR), ML
4. Udom0 : G P(IDV M , IDUdomU , SD privileges) (this step is necessary only for VMs that are SDs)
5. domB→ Sdom0 : Unpause IDV M and schedule it for execution

(c) Protocol for MTSD creation
1. Udom0→ Sdom0 : nclient, identifier of the MTSD to be installed (VM image resides with provider)
2. Sdom0→ domB : C MTSD(IDclient, MTSD image, nprovider, nclient, MTSD privileges)→ IDMTS D
3. domB→ Sdom0 : IDMTS D, TPMSign(nprovider ||PCR), ML
4. domB→ Udom0 : IDMTS D, TPMSign(nclient ||PCR), ML
5. domB→ Sdom0 : Unpause IDMTS D and schedule it for execution
Notes: In step 2, IDclient is the meta-domain identifier obtained during Udom0 creation.

Figure 3. Protocols used in SSC for the creation of Udom0, UdomUs, SDs and MTSDs.

quests the vTPM to decrypt this content, and places freshSym
and nSSL in Udom0’s memory, where SSC’s privilege model pre-
vents them from being accessed by Sdom0. Recall from Section 3.2
that Sdom0 cannot directly access the TPM or vTPM (only domB
can do so), and therefore cannot obtain the value of freshSym. In
step 5, Udom0 sends nSSL to the client, which responds in step 6
with the SSL private key encrypted under freshSym. Udom0 can
now decrypt this message to obtain the SSL private key. Assuming
that both freshSym and nSSL are random and generated afresh, the
protocol allows the client to detect replay attempts.

This protocol significantly restricts the power of evil twin at-
tacks launched by a malicious Sdom0. In such an attack, Sdom0
would coerce domB to create a malicious Udom0 domain, and trick
the client into installing its SSL private key within this domain.
This malicious domain would then transfer the SSL private key to
Sdom0, thereby compromising client confidentiality. In our proto-
col, domB checks the integrity of Udom0 image before booting
the domain, thereby ensuring that the only “evil” twin that Sdom0
can create will have the same VM image as supplied by the client.
Sdom0 therefore cannot include arbitrary malicious functionality



in the evil twin (e.g., code to transmit secret keys to it) without
being detected by the client. Further, SSC’s privilege model pre-
vents Sdom0 from directly inspecting the memory of the twin VM,
thereby protecting the the value of freshSym that is installed in it
during creation. Finally, steps 5 and 6 of the protocol detect replay
attempts, thereby ensuring that even if a twin VM is created, ex-
actly one of the twins can interact with the client to obtain its SSL
private key. This twin VM then becomes the Udom0 of the client’s
meta-domain, while the other twin can no longer interact with the
client.

UdomUs and SDs. Udom0 accepts and processes client requests
to start UdomUs and SDs. Clients establish an SSL connection with
Udom0, and transmit the kernel and ramdisk images of the new
domain to Udom0. Udom0 forwards this request to domB, which
then builds the domain. See Figure 3(b).

We aim for Udom0s and SDs to be stateless. They perform spe-
cialized tasks, and do not need persistent state for these tasks. The
lack of persistent state eases the clients’ task of verifying the in-
tegrity of these domains (e.g., via inspection of their code), thereby
minimizing risk even if they are compromised via attacks directed
against them. The lack of state also allows easy recovery upon com-
promise; they can simply be restarted [9]. In our design, we do not
assign persistent storage to SDs. They are neither extensible nor are
they allowed to load kernel modules or extensions outside of the
initial configuration. All relevant configuration values are passed
via command line parameters. This design does require greater
management effort on the part of clients, but is to be expected in
SSC, because it shifts control from the provider to clients.

We have implemented SDs and Udom0s in our prototype using
a carefully-configured paravirtualized Linux kernel; they only use
ramdisks. The file system contains binaries, static configuration
and temporary storage. SSC elides any unnecessary functionality in
SDs and Udom0s to minimize their attack surface. Udom0s in our
prototype integrates a replica of the xend Python-based toolstack
for end-user interaction and to provide an administrative interface
to the meta-domain. It may be possible to reduce the size of the
client-level TCB using a simpler software stack (e.g., based on
Mini-OS, which is part of the Xen distribution). However, we have
not done so in our current prototype.

MTSDs. Like SDs, each MTSD belongs to a client meta-domain.
MTSDs can be given specific privileges (via the C MTSD hy-
percall) to map the state of client VMs, checkpoint, fingerprint, or
introspect them. This allows the cloud provider to inspect client do-
mains for regulatory compliance. Section 3.6 discusses regulatory
compliance with MTSDs in further detail.

Both the cloud provider and client cooperate to start the MTSD,
as shown in the protocol in Figure 3(c). The client initiates the
protocol after it has agreed to start the MTSD in its meta-domain.
DomB creates the MTSD, and both the provider and the client
can each ensure that the MTSD was initialized properly using
signed measurements from the vTPM. The provider or the client
can terminate the protocol at this point if they find that the MTSD
has been tampered with.

3.4 SSC Privilege Model
At the heart of SSC is a new privilege model enforced by the
hypervisor. This model enables clients to administer their own VMs
securely, without allowing cloud administrators to eavesdrop on
their data. For purposes of exposition, we broadly categorize the
privileged operations performed by a VMM into six groups.
(1) VM control operations include pausing/unpausing, schedul-
ing, and destroying VMs.
(2) Privacy-sensitive operations allow the mapping of memory
and virtual CPU registers of a VM.

Sdom0 domB Udom0 SD/MTSD
VM control (C) X X X
Privacy-sensitive (P) X X
Read-only (R) X X X
Build-only (B) X
Virtual I/O (I) X X X
Platform config. (L) X

Table 1. Actors and operations in the privilege model. Each X
in the table denotes that the actor can perform the correspond-
ing operation.

Sdom0 domB Udom0 SD MTSD
Hardware L
Sdom0
domB C,R,I I
Udom0 C,R,I B
SD C,R,I B C,P,R,I C,P,R,I C,P,R,I
MTSD C,R,I B R,I R,I R,I
UdomU C,R,I B C,P,R,I C,P,R,I C,P,R,I

Table 2. Actors, objects, and operations in the privilege model.
Each column denotes an actor that performs an operation,
while each row denotes the object upon which the operation
is performed. Operations are abbreviated as shown in Table 1.

(3) Read-only operations expose non-private information of a VM
to a requester, including the number of vCPUs and RAM allocation
of a VM, and the physical parameters of the host.
(4) Build-only operations include privacy-sensitive operations
and certain operations that are only used during VM initialization.
(5) Virtual I/O operations set up event channels and grant tables
to share memory and notifications in a controlled way for I/O.
(6) Platform configurations manage the physical host. Examples
of these operations include programming the interrupt controller or
clock sources.
In addition to these operations, VMMs also perform hardware de-
vice administration that assigns PCI devices and interrupts to dif-
ferent VMs. We expect that hardware device administration may
rarely be used in a dynamic cloud environment, where VM check-
pointing and migration are commonplace, and leave for future work
the inclusion of such operations in the SSC privilege model.

In SSC, Sdom0 has the privileges to perform VM control, read-
only, virtual I/O and platform operations. VM control operations al-
low VMs to be provisioned for execution on physical hardware, and
it is unreasonable to prevent Sdom0 from performing these tasks.
A malicious system administrator can misuse VM control opera-
tions to launch denial-of-service attacks, but we exclude such at-
tacks from our threat model. Sdom0 retains the privileges to access
read-only data of client VMs for elementary management opera-
tions, e.g., listing the set of VMs executing in a client meta-domain.
Sdom0 executes backend drivers for virtual devices and must there-
fore retain the privileges to perform virtual I/O operations for all
domains on the system. As discussed earlier, SSC also admits the
notion of driver domains, where device drivers execute within sep-
arate VMs [28]. In such cases, only the driver domains need to re-
tain privileges to perform virtual I/O. Finally, Sdom0 must be able
to control and configure physical hardware, and therefore retains
privileges to perform platform operations.

The domain builder (domB) performs build-only operations.
Building domains necessarily involves some operations that are cat-
egorized as privacy-sensitive, and therefore includes them. How-
ever, when domB issues a hypercall on a target domain, the hyper-
visor first checks that the domain has not yet accrued a single cycle
(i.e., it is still being built), and allows the hypercall to succeed only



if that is the case. This prevents domB from performing privacy-
sensitive operations on client VMs after they have been built.

Udom0 can perform privacy-sensitive and read-only operations
on VMs in its meta-domain. It can also perform limited VM control
and virtual I/O operations. Udom0 can pause/unpause and destroy
VMs in its meta-domain, but cannot control scheduling (this privi-
lege rests with Sdom0). Udom0 can perform virtual I/O operations
for UdomUs in its meta-domain. Udom0 can delegate specific priv-
ileges to SDs and MTSDs as per their requirements. A key aspect of
our privilege model is that it groups VMs by meta-domain. Opera-
tions performed by Udom0, SDs and MTSDs are restricted to their
meta-domain. While Udom0 has privileges to perform the above
operations on VMs in its meta-domain, it cannot perform VM con-
trol, privacy-sensitive, and virtual I/O operations on MTSDs exe-
cuting in its meta-domain. This is because such operations will al-
low Udom0 to breach its contract with the cloud provider (e.g., by
pausing, modifying or terminating an MTSD that the Udom0 has
agreed to execute). Table 1 and Table 2 summarize the privilege
model of SSC.

We implemented this privilege model in our prototype using the
Xen Security Modules (XSM) framework [38]. XSM places a set
of hooks in the Xen hypervisor, and is a generic framework that
can be used to implement a wide variety of security policies. Secu-
rity policies can be specified as modules that are invoked when a
hook is encountered at runtime. For example, XSM served as basis
for IBM’s sHype project, which extended Xen to enforce manda-
tory access control policies [38]. We implemented the privilege de-
scribed in this section as an XSM policy module.

Although the privilege model described above suffices to im-
plement a variety of services, it can possibly be refined to make it
more fine-grained. For example, our privilege model can currently
be used to allow or disallow an SD from inspecting UdomU mem-
ory. Once given the privilege to do so, the SD can inspect arbitrary
memory pages. However, it may also be useful to restrict the SD to
view/modify specific memory pages, e.g., on a per-process granu-
larity, or view kernel memory pages alone. We plan to explore such
extensions to the privilege model in future work.

3.5 Virtual I/O
In our SSC prototype, device drivers execute within Sdom0,
thereby requiring clients to depend on Sdom0 to perform I/O on
their behalf. Naı̈vely entrusting Sdom0 with I/O compromises
client privacy. Our prototype protects clients via modifications to
XenStore.

In Xen, domUs discover virtual devices during bootstrap using
a service called XenStore, which runs as a daemon in dom0. Each
domU on the system has a subtree in XenStore containing its virtual
device configurations. Dom0 owns XenStore and has full access to
it, while domUs only have access to their own subtrees.

In SSC, we modified XenStore allowing domB to create sub-
trees for newly-created VMs, and give each Udom0 access to the
subtrees of all VMs in its meta-domain. Udom0 uses this privilege
to customize the virtual devices for its UdomUs. For instance, it
can configure a UdomU to use Sdom0 as the backend for virtual
I/O. Alternatively, it can configure the UdomU to use an SD as a
backend; the SD could modify the I/O stream (e.g., a storage SD;
see Figure 4). An SD can have Sdom0 as the backend, thereby ulti-
mately directing I/O to physical hardware, or can itself have an SD
as a backend, thereby allowing multiple SDs to be chained on the
path from a UdomU to the I/O device. We also modified XenStore
to allow Sdom0 and Udom0 to insert block devices into domB.
This is used to transfer kernel and ramdisk images during domain
building.

Xen traditionally uses a mechanism called grant tables for fine-
grained control on virtual I/O. Grant tables are used when domUs

communicate with the backend drivers in dom0. DomU uses grant
tables to share a single page of its memory with dom0, which
redeems the grant to access the page. The hypervisor enforces any
access restrictions specified by domU, and does not even disclose
the actual page number to dom0. SSC benefits from the grant tables
mechanism in allowing meta-domains to ultimately connect to and
communicate I/O payloads to their backend drivers in Sdom0. As
long as these payloads are encrypted (e.g., using an SD within the
meta-domain), client privacy is protected.

Ultimately, Sdom0 is responsible for I/O operations by com-
municating with physical hardware. Malicious Sdom0s can mis-
use this privilege to enable a number of attacks. For example,
a client’s Udom0 attaches a virtual device via a handshake with
Sdom0. Sdom0 can launch attacks by corrupting this handshake
or firing spurious virtual interrupts. As long as client payloads are
encrypted, none of these attacks will breach client privacy; they
merely result in denial-of-service attacks.

A final possibility for attack is XenStore itself. In our prototype,
XenStore resides within Sdom0, which can possibly leverage this
fact implement a variety of denial of service attacks. (Note that
even if XenStore is abused to connect client VMs to the wrong
backend, grant tables prevent client payloads from being leaked to
Sdom0). Techniques for XenStore protection have recently been
developed in the Xoar project [9], and work by factoring XenStore
into a separate domain (akin to domB). SSC can employ similar
techniques, although we have not done so in our prototype.

3.6 Regulatory Compliance using MTSDs
As previously discussed, an MTSD executes within a client meta-
domain. The MTSD can request specific privileges over client VMs
in this meta domain (via a manifest) to perform regulatory com-
pliance checks. These privileges include access to a VM’s mem-
ory pages, vCPU registers and I/O stream. For example, an MTSD
to ensure that a client VM is not executing malicious code may
request read access to the VM’s memory and registers (see Sec-
tion 4.2). The client can inspect the manifest to decide whether the
requested privileges are acceptable to it, and then start the MTSD.
The privileges requested in the manifest are directly translated into
parameters for the C MTSD hypercall. Both the client and the
provider can verify that the MTSD was started with the privileges
specified in the manifest.

Clients may wish to ensure that the MTSD’s functionality does
not compromise their privacy. For example, the client may want to
check that an MTSD that reads its VM memory pages does not in-
advertantly leak the contents of these pages. One way to achieve
this goal is to inspect the code of the MTSD to ensure the absence
of such undesirable functionality. However, we cannot reasonably
expect most cloud clients to have the economic resources to con-
duct thorough and high-quality security evaluations of MTSDs.

We therefore limit the amount of information that an MTSD
can transmit outside the meta-domain. MTSDs are not given any
persitent storage, and can only communicate with the provider
(i.e., Sdom0) via the SSC hypervisor. Further, this communica-
tion channel is restricted to be a stream of bits whose semantics
is well-understood. That is, each 0 bit in the stream denotes a vio-
lation of regulatory compliance, while a 1 bit denotes otherwise.1
The client can set up a user daemon (e.g., within Udom0) that is
awakened by the SSC hypervisor upon every new bit transmitted
by the MTSD over this channel. An honest client that does not vio-
late the provider’s regulatory compliance policies should therefore
only expect to see a stream of 1s transmitted to Sdom0. Any 0s

1 Note that a client cannot modify this stream without tampering with the code of the
MTSD. The provider ensures that the MTSD was booted correctly (Figure 3(c)), and
SSC’s privilege model prevents the client from modifying a running MTSD.



Platform Time (seconds)
Traditional Xen 2.131±0.011
SSC 2.144±0.012 (0%)

Table 3. Cost of building domains.

in the stream either denote an MTSD attempting to steal informa-
tion, or an inadvertant compliance violation (e.g., due to malware
infection). In either case, the client can terminate its meta-domain.

4. EVALUATION
In evaluating our SSC prototype, our main goals were:
(1) To demonstrate the flexibility of the SSC model in enabling
various virtualization-based services as SDs; and
(2) To compare the performance of these SD-based services
against their traditional, dom0-based counterparts.

Our experiments were performed on a Dell Poweredge R610
system equipped with 24GB RAM, eight 2.3GHz Xeon cores with
dual threads (16 concurrent executions), Fusion-MPT SAS drives,
and a Broadcom NetXtreme II gigabit NIC. All virtual machines
started in our experiments (dom0, domU, Sdom0, Udom0, UdomU,
SDs and domB) were configured to have 2GB RAM and 2 virtual
CPUs. The experimental numbers reported in this section are aver-
aged over five executions; we also report standard deviations.

In SSC, all VM creation requests are communicated to domB.
DomB neither has any persistent state nor does it require a file
system. During startup, domB prepares XenStore devices that are
necessary for block interface communication between domB and
other control VMs; it does not require any other I/O devices. Kernel
images and the initial ramdisk along with the configuration of the
VM to be created are presented to domB as a virtual disk via
the block device interface. Table 3 compares the cost of building
VMs on a traditional Xen VMM and on an SSC platform. As
these numbers demonstrate, the costs of building domains on these
platforms is near-identical. We now illustrate the utility of SSC by
using it to build several SDs that implement common utilities.

4.1 Storage SDs
Cloud providers supply clients with persistent storage. Because the
actual storage hardware is no longer under the physical control of
clients, they must treat it as untrusted. They must therefore have
mechanisms to protect the confidentiality and integrity of data that
resides on cloud storage. Such mechanisms can possibly be im-
plemented within the client’s VMs itself (e.g., within a custom file
system). However, virtual machine technology allows such services
to be conveniently located outside the VM, where they can also be
combined flexibly. It also isolates these services from potential at-
tacks against client VMs. Because all I/O from client VMs is vir-
tualized, storage encryption and integrity checking can easily be
implemented as cloud-based services offered by the provider.

Cloud providers would normally implement such services as
daemons within dom0. However, this approach entails clients to
trust dom0, and hence cloud administrators. SSC provides clients
the ability to implement a variety of storage services as SDs with-
out trusting cloud administrators. We describe two such SDs below,
one for integrity checking and another for encryption. Our imple-
mentation of both SDs is set up as illustrated in Figure 4. Each
SD executes as a VM. When Udom0 starts a UdomU that wants
to avail the service offered by an SD, it configures the UdomU to
advertise the SD as the backend driver for disk operations. The SD
itself executes a frontend driver that interfaces within a backend
driver running within Sdom0. When UdomU attempts to perform a
disk operation, the data first goes to the SD, which is the advertised
backend for the UdomU. The SD performs the advertised service,

Backend Frontend Backend Frontend

Storage

SDom0 Architecture of Storage SD UDomU
Disk 
R/W

Figure 4. Storage SD architecture.

Platform Unencrypted (MB/s) Encrypted (MB/s)
Xen (dom0) 81.72±0.15 71.90±0.19
SSC (SD) 75.88±0.15 (7.1%) 70.64±0.32 (1.5%)

Table 4. Cost incurred by the storage encryption SD. For the
first experiment, the SD runs a loopback device that performs
no encryption. For the second, the SD runs a crypto loopback
device with 128-bit AES encryption.

and passes it to the frontend executing within the SD. In turn, the
frontend forwards the (possibly modified) data block to Sdom0’s
backend, which interacts with the disk to store data persistently.

This setup can also be used to chain SDs, each offering its own
service. For example, an encryption SD (see below) can serve as
the I/O backend for UdomU. In turn, a checkpointing SD (see
Section 4.4) can serve as the I/O backend for the encryption SD.
This would allow clients to easily produce disk checkpoints that
store encrypted data.

Encryption SD. Storage encryption protects the confidentiality of
client data by enciphering it before storing it on disk. Using SSC,
clients can deploy their own storage encryption SD that enciphers
their data before it is transmitted to Sdom0, which stores it on
disk (or further processes the encrypted data, e.g., to implement
replication). Conversely, Sdom0 reads encrypted data from disk,
and passes it to the SD, which decrypts it and passes it to the client.
SSC ensures that Sdom0 cannot access the encryption keys, which
are stored in client VM memory, thereby protecting client data.

Udom0 initiates the storage encryption SD using a key passed
as a kernel parameter, and an initialization script that starts the SD
with a crypto loopback device. The SD encrypts client data before
it reaches Sdom0, and decrypts enciphered disk blocks fetched by
Sdom0. Data is never presented in the clear to the cloud provider,
and the encryption key is never exposed to Sdom0. In our imple-
mentation, the crypto loopback device in the SD uses AES 128-bit
encryption.

We evaluated the cost of our SD using two experiments. In
the first experiment, we simply used a loopback device (rather
than a crypto loopback device) as the backend within our SD, and
compared the achieved disk throughput against traditional I/O on
Xen where domU communicates with a backend driver in dom0
(i.e., data is stored in the clear). This experiment allows us to
measure the extra overhead of introducing a level of indirection
in the I/O path (i.e., the SD itself). In the second experiment, we
used the crypto loopback device as the backend and measured the
overhead of encryption. In our experiments, we emptied buffer
caches so that each disk operation results in a disk access, thereby
traversing the entire I/O path and emulating the worst-case scenario
for storage encryption.

We used the Linux dd utility to perform a large read operation
of size 2GB. Table 4 presents the results of our experiments. These
experiments show that the reduction in disk throughput introduced
by the extra level of indirection is about 7%. With encryption
enabled, the raw disk throughput reduces in both cases, thereby
reducing the overhead of SSC-based encryption to about 1%.



Platform Throughput (MB/s)
Xen (dom0) 71.7±0.1
SSC (SD) 66.6±0.3 (7.1%)

Table 5. Cost incurred by the storage integrity checking SD.

Integrity Checking SD. Our integrity checking SD offers a ser-
vice similar to the one proposed by Payne et al. [35]. The SD im-
plements a loopback device, which runs as a kernel module. This
device receives disk access requests from UdomUs at the block
level, enforces the specified integrity policy, and forwards the re-
quests to/from disk.

In our prototype SD, users specify important system files and
directories to protect. The SD intercepts all disk operations to these
targets, and checks that the SHA256 hashes of these disk blocks
appear in a database of whitelisted hashes. Since all operations
are intercepted at the block level, the SD needs to understand the
high-level semantics of the file system. We use an offline process to
extract known-good hashes at the block level from the client VM’s
file system, and populate the hash database, which the SD consults
at runtime to check integrity.

We evaluated the cost of the integrity checking SD using the
same workload as for the encryption SD. We checked the integrity
of disk blocks against a whitelist database of 3000 hashes. Ta-
ble 5 compares the throughput achieved when this service is im-
plemented as an SD versus as a daemon in dom0. The SD service
incurs an overhead of about 7%, mainly because of the extra level
of indirection.

4.2 Memory Introspection SD
Memory introspection tools, such as rootkit detectors (e.g., [2, 29,
36, 45]), rely on the ability to fetch and inspect raw memory pages
from target VMs. In commodity cloud infrastructures, memory in-
trospection must be offered by the provider, and cannot be deployed
independently by clients, who face the unsavory option of using the
service but placing their privacy at risk.

Using SSC, clients can deploy memory introspection tools as
SDs. We illustrate such an SD by implementing an approach de-
veloped in the Patagonix project [29]. Patagonix aims to detect the
presence of covertly-executing malicious binaries in a target VM
by monitoring that VM’s page tables. As originally described, the
Patagonix daemon runs in dom0, maps all the memory pages of
the target VM, and marks all pages as non-executable when the
VM starts. When the target VM attempts to execute a page for the
first time, Patagonix receives a fault. Patagonix handles this fault
by hashing the contents of the page (i.e., an md5sum) requested for
execution, and comparing it against a database of hashes of code
authorized to execute on the system (e.g., the database may store
hashes of code pages of an entire Linux distribution). If the hash
does not exist in the database, Patagonix raises an alarm and sus-
pends the VM.

We implemented Patagonix as an SD. Each Patagonix SD mon-
itors a target UdomU, a reference to which is passed to the SD
when the UdomU boots up. Udom0 delegates to Patagonix SD
the privileges to map the UdomU’s pages, and mark them as non-
executable. The SD receives and handles faults as the UdomU ex-
ecutes new code pages. Our Patagonix SD can detect maliciously-
executing binaries with the same effectiveness as described in the
original paper [29]. To measure this SD’s performance, we mea-
sured the boot time of a monitored UdomU. The SD validates all
code pages that execute during boot time by checking each of them
against the hash databse. We compared the time taken by this SD
to a traditional setup where the Patagonix daemon executed within
dom0. Table 6 presents the results of our experiment, again show-
ing that using an SD imposes minimal overhead.

Platform Time (seconds)
Xen (dom0) 6.471±0.067
SSC (SD) 6.487±0.064 (0%)

Table 6. Cost of the memory introspection SD, measured as the
time to boot a Linux-based domain.

A memory introspection MTSD. Suppose that a cloud provider
wants to ensure that a client is not misusing cloud resources to host
and execute malicious software (or that an honest client’s VM has
not become infected with malware). In today’s cloud infrastructure,
this is achieved via VM introspection tools that execute in dom0.
Such tools can inspect and modify client state, and therefore require
dom0 to be trusted.

SSC offers cloud providers unprecedented power and flexibil-
ity in verifying client regulatory compliance while respecting client
privacy. As an example, cloud providers can implement the Patago-
nix SD above as an MTSD to ensure that a client VM is free of mal-
ware. In this case, the cloud provider would supply the database of
code hashes, which is the regulatory compliance policy. The MTSD
itself would execute in the client meta-domain; the manifest of this
MTSD simply requests privileges to read client memory pages and
registers. Because MTSDs resemble SDs in their implementation,
and only differ in the privileges assigned to them, the performance
of this MTSD is identical to the corresponding SD, as reported in
Table 6. The MTSD continuously monitors client UdomUs and re-
ports a violation of regulatory compliance to the cloud provider
(i.e., Sdom0) only if the client becomes infected with malware. The
cloud provider only learns whether the client has violated regula-
tory compliance, and cannot otherwise read or modify the content
of the client’s memory pages.

4.3 System Call Monitoring SD
There is a large body of work on system call-based anomaly de-
tection tools. While we will not attempt to summarize that work
here (see Giffin’s thesis [20] for a good overview), these techniques
typically work by intercepting process system calls and their ar-
guments, and ensuring that the sequence of calls conforms to a
security policy. The anomaly detector executes in a separate VM
(dom0), and capture system call traps and arguments from a user
VM for analysis. Using SSC, clients can implement their own sys-
tem call anomaly detectors as SDs. The SD simply intercepts all
system calls and arguments from a target UdomU and checks them
against a target policy.

On a paravirtualized platform, capturing system calls and their
arguments is straightforward. Each trap from a UdomU transfers
control to the hypervisor, which forwards the trap to the SD if it is
from a user-space process within the UdomU. The SD captures the
trap address and its arguments (passed via registers). However, the
situation is more complex on an HVM platform. On such a plat-
form, traps are directly forwarded to the kernel of the HVM by the
hardware without the involvement of the hypervisor. Fortunately,
it is still possible to capture traps, albeit differently on AMD and
Intel hardware. AMD supports control flags that can be set to trig-
ger VMExits on system calls. On the Intel platform, traps can be
intercepted by placing dummy values in the MSR (model-specific
register) corresponding to the syscall instruction to raise a page
fault on a system call. On a page fault, the hypervisor determines
the source of the fault; if due to a system call, it can forward the
trap address and registers to the SD.

We evaluated the cost of this approach by simply building an
SD to capture system calls and their arguments (i.e., our SD only
includes the system call capture tool; we do not check the captured
calls against any policies). We used the syscall microbenchmark
of the UnixBench benchmark suite [1] as the workload within the
target UdomU to evaluate the overhead of this SD. The syscall mi-



Platform System calls/second
Xen (dom0) 275K ±0.95
SSC (SD) 272K ±0.78 (1%)

Table 7. Cost incurred by the system call monitoring SD, mea-
sured using the UnixBench syscall microbenchmark.

Platform VM size No encryption With encryption
(MB) (seconds) (seconds)

Xen (dom0) 512 0.764±0.001 5.571±0.004
SSC (SD) 512 0.803±0.006 (5.1%) 5.559±0.005 (-0.2%)
Xen (dom0) 1024 1.840±0.005 11.419 ±0.008
SSC (SD) 1024 1.936±0.001 (5.2%) 11.329 ±0.073 (-0.8%)

Table 8. Cost incurred by the checkpointing SD.

crobenchmark runs mix of close, getpid, getuid and umask system
calls and outputs the number of system calls executed in a fixed
amount of time. In our experiments we compared the number of
system calls executed by the syscall microbenchmark when the sys-
tem call capture tool runs as SD to the traditional scenario where
the system call capture tool runs in dom0. Table 7 presents the re-
sult of the experiment and shows that running system call monitor
as an SD incurs negligible overhead.

4.4 Other SD-based Services
So far, we have illustrated several security services implemented as
SDs. However, the utility of SDs is not limited to security alone,
and a number of other services can be implemented as SDs. We
illustrate two such examples in this section.

Checkpointing SD. It is commonplace for cloud service providers
to checkpoint client VMs for various purposes, such as live migra-
tion, load balancing and debugging. On commodity cloud archi-
tectures, checkpointing is implemented as a user daemon within
dom0, which copies client VM memory pages and stores them un-
encrypted within dom0. If dom0 is untrusted, as is usually the case,
it is challenging to create trustworthy checkpoints [46]. SSC sim-
plifies checkpointing by allowing it to be implemented as an SD.
The SD maps the client’s memory pages, and checkpoints them
akin to the dom0 checkpointing daemon (in fact, we reused the
same code-base to implement the SD). As previously discussed,
clients can chain the storage encryption SD with the checkpointing
SD to ensure that the checkpoint stores encrypted data.

We implemented a checkpointing SD and evaluated it by check-
pointing VMs with two memory footprints: 512MB and 1024MB.
We also conducted an experiment where we chained this SD with
storage encryption SD; the checkpoint file is therefore encrypted in
this case. To mask the effects of disk writes, we saved the check-
point files on a memory-backed filesystem. Table 8 presents the
results of our experiments, comparing the costs of our checkpoint-
ing SD against a checkpointing service implemented in dom0. Our
results show that the costs of implementing checkpointing within
an SD are within 5% of implementing it within dom0. In fact, we
even observed minor speedups in the case where we chained check-
pointing with encryption. SSC therefore offers both security and
flexibility to customers while imposing mimimal overhead.

Memory Deduplication SD. When multiple VMs have memory
pages with identical content, one way to conserve physical memory
using a mechanism where VMs share memory pages [48]. Such a
mechanism benefits cloud providers, who are always on the lookout
for new techniques to improve the elasticity of their services. It can
also benefit cloud clients who may have multiple VMs on the cloud
and may be billed for the memory consumed by these VMs. Iden-
tifying and exploiting memory sharing opportunities among VMs
allows clients to judiciously purchase resources, thereby reducing
their overall cost of using the cloud. In commodity cloud comput-
ing environments, providers implement memory deduplication to

Platform VM size (MB) Time (seconds)
Xen (dom0) 512 6.948±0.187
SSC (SD) 512 6.941±0.045 (0%)
Xen (dom0) 1024 15.607±0.841
SSC (SD) 1024 15.788±0.659 (1.1%)

Table 9. Cost incurred by the memory deduplication SD.

consolidate physical resources, but such services are not exposed
to clients, thereby limiting their applicability.

SSC allows clients to deploy memory deduplication on their
own VMs without involving the cloud provider. To illustrate this,
we implemented a memory deduplication SD. This SD accepts as
input a list of domains (UdomUs) in the same meta-domain, and
identifies pages with identical content (using their md5 hashes).
For each such page, the SD instructs the hypervisor to keep just
one copy of the page, and free the remaining copies by modifying
the page tables of the domains. The hypervisor marks the shared
pages as belonging to special “shared memory” domain. When a
domain attempts to write to the shared page, the hypervisor uses
copy-on-write to create a copy of that page local to the domain that
attempted the write, and makes it unshared in that domain.

We evaluated the performance of the memory deduplication SD
by measuring the time taken to identify candidate pages for sharing,
and marking them as shared. We conducted this experiment with a
pair of VMs with memory footprints of 512MB and 1024MB each.
As before, we compared the performance of the SD with that of a
service running in dom0 on stock Xen. Table 9 presents the results,
and shows that the performance of the SD is comparable to the
traditional approach.

5. IMPLICATIONS OF THE SSC MODEL
The SSC model deviates in a number of ways from the techniques
and assumptions used by contemporary cloud services. In this sec-
tion, we discuss the implications of the SSC model. While the fo-
cus of this paper was on the core mechanisms needed to realize the
SSC model, the issues discussed in this section are important for
the practical deployment of an SSC platform.

5.1 Use of Trusted Computing
SSC relies critically on trusted computing technology in the proto-
cols used to build client domains (Figure 3). We assume that clients
interact with a vTPM instance, the supporting daemons for which
are implemented in domB. The keys of this vTPM instance (in
particular, the attestation identity key (AIK) and the endorsement
key (EK)) are bound to the hardware TPM as discussed in prior
work [5]. When used in the context of cloud computing, the use
of the TPM and associated attestation protocols raises three issues:
(1) do TPM/vTPM keys reveal details of the cloud provider’s in-
frastructure? (2) how are keys distributed? and (3) do TPM/vTPM
measurements reveal proprietary details of the software platform?
We discuss these issues below.

(1) Can TPM/vTPM keys reveal physical details of the cloud in-
frastructure? SSC requires each physical machine in the cloud
provider’s infrastructure to be equipped with a hardware TPM,
which serves as a hardware root of trust on that machine. Trusted
computing protocols typically require all keys used during attes-
tation to be bound to a specific hardware TPM. This includes the
TPM’s AIKs, and the AIKs and EKs of vTPM instances hosted
on a physical machine. AIKs are distributed to clients, who may
include the cloud provider’s competitors. Researchers have there-
fore argued that binding keys to the TPM can expose details of the
underlying hardware platform to competitors (e.g., [40]). For ex-
ample, a competitor may be able to infer the number of physical
machines in the cloud infrastructure.



Fortunately, such risks can easily be alleviated. According to
specifications released by the Trusted Computing Group [21],
each hardware TPM can have arbitrarily many AIKs. However,
the TPM’s EK is unique, and is burned into the TPM chip by the
hardware manufacturer. The public portion of the TPM’s EK is
distributed to trusted third parties, called privacy certifying author-
ities (CAs). AIKs are bound to the TPM by signing them using the
private portion of the TPM’s EK. Likewise, vTPM keys are also
bound to the hardware TPM, e.g., by signing them using one of
the hardware TPM’s AIKs [5]. Given an AIK, the privacy CA can
certify that the AIK is genuine, i.e., it was indeed generated by a
hardware TPM. Although the association between an AIK and the
hardware TPM to which it is bound is known to the privacy CA,
this association is never released outside the privacy CA. In SSC,
the privacy CA can either be hosted by the cloud provider or a
trusted third party.

The protocols in Figure 3 only require the client to be able to
verify that an AIK is genuine, and therefore only require the client
to interact with the privacy CA. The cloud provider can ensure
that the client gets a fresh AIK for each execution of an attestation
protocol. Because a single hardware TPM exposes multiple AIKs,
it is impossible for an adversarial client to assert whether Udom0s
running with different AIKs are executing on the same or different
physical hosts, thereby protecting details of the cloud provider’s
physical infrastructure.

Alternatively, the cloud provider could host a centralized,
trusted cloud verification service, as proposed in prior work [41,
42]. This verification service enables indirect verification of hosts
by vouching for their integrity. Clients could interact with this veri-
fication service to obtain attestations, instead of directly interacting
with the vTPM on the execution platform, thereby alleviating the
risks discussed above.
(2) How are keys distributed to clients? Before initiating the pro-
tocols in Figure 3, clients must first obtain the public key of the
vTPM instance assigned to them. While key distribution has histor-
ically been a difficult problem, requiring public-key infrastructure
(PKI) support, the centralized nature of cloud computing services
eases key distribution. The cloud provider, who is trusted in SSC’s
threat model, can establish trusted services required by PKI, such
as a privacy CA and a central directory of AIK public keys. Prior to
creating a new meta-domain, a client must leverage the PKI infras-
tructure to obtain the AIK public key of a vTPM instance assigned
to it, and use the privacy CA determine whether the key is genuine.
(3) Can TPM/vTPM measurements reveal details of proprietary
cloud software? TPM-based attestation protocols use measure-
ments, typically hashes of software packages loaded for execution,
to establish the trustworthiness of a platform. However, this ap-
proach may reveal specifics of the cloud provider’s software infras-
tructure to competitors. For example, measurements may reveal the
use of a module implementing a particular scheduling algorithm or
a performance-enhancing library. The protocols used by SSC are
based on measurements and are therefore prone to this risk.

One way to alleviate such risks is to use property-based TPM
protocols [34, 37, 40, 42, 44]. The main feature of such protocols
is that they attest specific properties of the software platform.
That is, instead of attesting software using low-level measurements
(i.e., software hashes), which could reveal proprietary information
to competitors, they attest whether the software satisfies certain
properties implied by the client’s security goals. For example, on
SSC, such protocols could attest that the hypervisor implements
the SSC privilege model, but not reveal any additional information
to clients. Prior research has integrated property-based attestation
protocols with the vTPM [37]. We will investigate the applicability
of these protocols to SSC in future work.

5.2 VM Hosting and Migration
By its nature, SSC requires co-location of certain VMs on the same
platform. A client’s UdomU, any SDs and MTSDs associated with
it, and the Udom0 of the client’s meta-domain must be co-located
on the same platform. Such constraints call for research on new
algorithms for VM scheduling and migration. For example, if the
cloud provider migrates one of the client’s UdomUs to another
host, it must also migrate SDs that service that UdomU. Some of
these SDs may service other UdomUs that are not migrated; in such
cases, the SDs (and the Udom0) must be replicated on both hosts.
The stateless nature of Udom0 and several SDs (e.g., the storage
encryption SD) can potentially ease migration. For such stateless
domains, the cloud provider can simply start a fresh instance of
the domain on the target platform. A more thorough investigation
of the cost and resource implications of these issues requires a
deployment of SSC on several hosts. It also requires changes to
administrative toolstacks (e.g., VM migration tools, installed in
Sdom0) to make them SSC-aware. We plan to investigate these
topics in future research.

5.3 Client Technical Knowhow
SSC provides clients with unprecedented flexibility to deploy cus-
tomized cloud-based services and holds clients responsible for ad-
ministering their own VMs. However, this does not necessarily
mean that clients need to have increased technical knowhow or
manpower to leverage the benefits of SSC, e.g., to implement their
own services as SDs. Cloud providers can ease the deployment path
for SSC by following an SD app store model akin to mobile appli-
cation markets. Both cloud providers as well as third-party devel-
opers can contribute SDs to such an app store, from where they can
be downloaded and used by clients. In fact, the dynamics of such
an app store model can provide both a revenue generation oppor-
tunity to cloud providers (e.g., clients can purchase SDs that they
wish to use), as well as a reputation system for clients to judiciously
choose SDs for their meta-domains. Of course, technically sophis-
ticated clients can still implement their own SDs without choosing
from the app store.

Finally, one of the main advertised benefits of cloud computing
is that it frees clients from having to administer their own VMs.
By allowing clients to administer their own VMs, SSC apparently
nullifies this benefit. We feel that this is a fundamental tradeoff, and
the price that clients must pay for increased security, privacy, and
control over their VMs. One of the consequences of this tradeoff
is that clients without the appropriate technical knowhow may
commit administrative errors, e.g., giving a UdomU or an SD more
privileges than it needs. Nevertheless, SSC ensures that the effects
of such mistakes are confined to the client’s meta-domain, and do
not affect the operation of other clients on the same platform.

6. RELATED WORK
In this section, we compare SSC with prior work in two areas:
security and privacy of client VMs in the cloud, and extending the
functionality of the cloud.

Security and Privacy of Client VMs. Popular cloud services,
such as Amazon’s EC2 and Microsoft’s Azure rely on hypervisor-
based VMMs (Xen [3] and Hyper-V [32], respectively). In such
VMMs, the TCB consists of the hypervisor and an administrative
domain. Prior attempts to secure the TCB have focused on both
these entities, as discussed below.

Historically, hypervisors have been considered to be a small
layer of software. Prior work has argued that the architecture of hy-
pervisors resembles that of microkernels [22]. The relatively small
code size of research hypervisors [31, 43, 47], combined with the



recent breakthrough in formally verifying the L4 microkernel [27],
raises hope for similar verification of hypervisors. However, com-
modity hypervisors often contain several thousand lines of code
(e.g., 150K LoC in Xen 4.1) and are not yet within the realm of
formal verification. Consequently, researchers have proposed archi-
tectures that completely eliminate the hypervisor [26].

The main problem with these techniques (i.e., small hypervisors
and hypervisor-free architectures) is that they often do not support
the rich functionality that is needed in cloud computing. Production
hypervisors today need to support different virtualization modes,
guest quirks, hardware features, and software features like memory
deduplication and migration. In SSC, we work with a commodity
hypervisor-based VMM (Xen), but assume that the hypervisor is
part of the TCB. While this exposes an SSC-based VMM to at-
tacks directed against hypervisor vulnerabilities, it also allows the
SSC model to largely resemble commodity cloud computing. Re-
cent advances to strengthen hypervisors against certain classes of
attacks [49] can also be applied to SSC, thereby improving the over-
all security of the platform.

In comparison to hypervisors, the administrative domain is large
and complex. It typically executes a complete OS kernel with de-
vice drivers and a user-space control toolstack. The hypervisor
gives the administrative domain privileges to control and manip-
ulate client VMs. The complexity of the administrative domain has
made it the target of a number of attacks [10, 11, 12, 13, 14, 23],

To address threats against the administrative domain, the re-
search community has focused on adopting the principle of sepa-
ration of privilege, an approach that we also adopted in SSC. Mur-
ray et al. [33] disaggregated the administrative domain by isolat-
ing in a separate VM the functionality that builds new VMs. This
domain builder has highly-specific functionality and a correspond-
ingly small code-base. This feature, augmented with the use of a
library OS enhances the robustness of that code. Murray et al.’s de-
sign directly inspired the use of domB in SSC. Disaggregation is
also advocated by Nova [47]. The Xoar project [9] extends this ap-
proach by “sharding” different parts of the administrative toolstack
into a set of domains. Previous work has also considered separate
domains to isolate device drivers [28], which are more defect-prone
than the rest of the kernel.

SSC is similar to these lines of research because it also aims
to reduce the privilege of Sdom0, which can no longer inspect the
code, data and computation of client VMs. However, SSC is unique
in delegating administrative privileges to clients (via Udom0). It is
this very feature that enables clients to deploy custom services to
monitor and control their own VMs.

The CloudVisor project [52] leverages recent advances in nested
virtualization technology to protect the security and privacy of
client VMs from the administrative domain. In CloudVisor, a com-
modity hypervisor such as Xen executes atop a small, trusted, bare-
metal hypervisor. This trusted hypervisor intercepts privileged op-
erations from Xen, and cryptographically protects the state of client
VMs executing within Xen from its dom0 VM, e.g., dom0 only has
an encrypted view of a client VM’s memory.

The main advantage of CloudVisor over SSC is that its TCB
only includes the small, bare-metal hypervisor, comprising about
5.5KLOC, whereas SSC’s system-wide TCB includes the entire
commodity hypervisor and domB. Moreover, the use of cryptogra-
phy allows CloudVisor to provide strong guarantees on client VM
security and privacy. However, SSC offers three concrete advan-
tages over CloudVisor. First, SSC offers clients more flexible con-
trol over their own VMs than CloudVisor. For example, because
CloudVisor only presents an encrypted view of a client’s VM to
dom0, many security introspection tools (e.g., memory introspec-
tion, as in Section 4.2) cannot be implemented within dom0. Sec-
ond, unlike CloudVisor, SSC does not rely on nested virtualization.

Nesting fundamentally imposes overheads on client VMs because
privileged operations must be handled by both the bare-metal and
nested hypervisors, which can slow down I/O intensive client appli-
cations, as reported in the CloudVisor paper. Third, SSC’s MTSDs
allow the cloud provider and clients to execute mutually-trusted
services for regulatory compliance. It is unclear whether the Cloud-
Visor model can achieve mutual trust of shared services.

Finally, the Excalibur system [40] operates under the same
threat model as SSC, and aims to prevent malicious cloud system
administrators from accessing client data. It introduces a new ab-
straction, called policy-sealed data, which allows encrypted client
data to only be decrypted on nodes that satisfy a client-specified
policy, e.g., only those running the CloudVisor hypervisor, or those
located in a particular geographic region. Excalibur includes a cen-
tralized monitor, as well as new protocols aimed specifically to ad-
dress the TPM-related issues outlined in Section 5. However, Ex-
calibur’s threat model excludes certain classes of attacks via the
dom0 management interface, e.g., attacks via direct memory in-
spection, that SSC explicitly addresses. Future work could investi-
gate a system that integrates concepts from SSC and Excalibur, in
an attempt to combine the benefits of both systems.

Extending the Functionality of VMMs. There has been nearly
a decade of research on novel services enabled by virtualization,
starting with Chen and Noble’s seminal paper [6]. These include
new techniques to detect security infections in client VMs (e.g., [2,
7, 17]), arbitrary rollback [16], and VM migration [8]. However,
most of these techniques are implemented within the hypervisor
or the administrative domain. On current cloud infrastructures,
deploying these techniques requires the cooperation of the cloud
provider, which greatly limits their impact.

SSC enables clients to deploy their own privileged services
without requiring the cloud provider to do so. The primary ad-
vantage of such an approach is that clients need no longer expose
their code and data to the cloud provider. At the same time, SSC’s
MTSDs accommodate the need for cloud providers to ensure regu-
latory compliance and have some control over client VMs.

The xCloud project [50, 51] also considers the problem of pro-
viding clients flexible control over their VMs. The original position
paper [50] advocated several approaches to this problem, including
by extending hypervisors, which may weaken hypervisor security.
The full paper [51] describes XenBlanket, which realizes the vision
of the xCloud project using nested virtualization. XenBlanket im-
plements a “blanket” layer that allows clients to execute paravirtu-
alized VMMs atop commodity cloud infrastructures. The key bene-
fit of XenBlanket over SSC is that it provides clients the same level
of control over their VMs as does SSC but without modifying the
hypervisor of the cloud infrastructure. However, unlike SSC, Xen-
Blanket does not address the problem of protecting the security and
privacy of client VMs from cloud administrators.

7. CONCLUSIONS AND FUTURE WORK
SSC is a new cloud computing model that improves client security
and privacy, and gives clients the flexibility to deploy privileged
services on their own VMs. SSC introduces new abstractions and
a supporting privilege model to achieve these goals. We integrated
SSC with a commodity hypervisor (Xen), and presented case stud-
ies showing SSC’s benefits.

In the future, we plan to enhance SSC by factoring devices
drivers [28] and XenStore into their own domains [9]. We also
plan to explore other novel services enabled by SDs. While our
evaluation in Section 4 has primarily focused on SD-based secu-
rity and systems services, we also plan to build network-based ser-
vices using SDs. Individual cloud clients can leverage SDs to im-
plement middleboxes, such as NIDS systems, firewalls and traffic



shapers, and to run performance-intensive network monitoring ser-
vices. Such network-based services are currently under the control
of cloud providers, and clients often have no say in configuring
them. SDs therefore allow clients to enforce arbitrary network secu-
rity and auditing policies without having to rely on cloud providers
to deploy the corresponding services. Finally, we plan to address
several of the issues discussed in Section 5 in an effort to make
SSC a practical alternative to current cloud infrastructures.
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